These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 15074943)

  • 1. Recoverable, reusable, highly active, and sulfur-tolerant polymer incarcerated palladium for hydrogenation.
    Okamoto K; Akiyama R; Kobayashi S
    J Org Chem; 2004 Apr; 69(8):2871-3. PubMed ID: 15074943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The polymer incarcerated method for the preparation of highly active heterogeneous palladium catalysts.
    Akiyama R; Kobayashi S
    J Am Chem Soc; 2003 Mar; 125(12):3412-3. PubMed ID: 12643686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practical preparation method of polymer-incarcerated (PI) palladium catalysts using Pd(II) salts.
    Hagio H; Sugiura M; Kobayashi S
    Org Lett; 2006 Feb; 8(3):375-8. PubMed ID: 16435838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel polymer incarcerated palladium with phosphinated polymers: active catalyst for Suzuki-Miyaura coupling without external phosphines.
    Nishio R; Sugiura M; Kobayashi S
    Org Lett; 2005 Oct; 7(22):4831-4. PubMed ID: 16235900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Palladium nanoclusters supported on propylurea-modified siliceous mesocellular foam for coupling and hydrogenation reactions.
    Erathodiyil N; Ooi S; Seayad AM; Han Y; Lee SS; Ying JY
    Chemistry; 2008; 14(10):3118-25. PubMed ID: 18260070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic hydrogenation of polyaromatic hydrocarbon (PAH) compounds in supercritical carbon dioxide over supported palladium.
    Yuan T; Marshall WD
    J Environ Monit; 2007 Dec; 9(12):1344-51. PubMed ID: 18049773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pd-MCM-48: a novel recyclable heterogeneous catalyst for chemo- and regioselective hydrogenation of olefins and coupling reactions.
    Banerjee S; Balasanthiran V; Koodali RT; Sereda GA
    Org Biomol Chem; 2010 Oct; 8(19):4316-21. PubMed ID: 20668769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A useful, reliable and safer protocol for hydrogenation and the hydrogenolysis of O-benzyl groups: the in situ preparation of an active Pd(0)/C catalyst with well-defined properties.
    Felpin FX; Fouquet E
    Chemistry; 2010 Nov; 16(41):12440-5. PubMed ID: 20845414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of polysilane-supported palladium/alumina hybrid catalysts and their application to hydrogenation.
    Oyamada H; Naito T; Miyamoto S; Akiyama R; Hagio H; Kobayashi S
    Org Biomol Chem; 2008 Jan; 6(1):61-5. PubMed ID: 18075649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly enantioselective synthesis of sultams via Pd-catalyzed hydrogenation.
    Yu CB; Wang DW; Zhou YG
    J Org Chem; 2009 Aug; 74(15):5633-5. PubMed ID: 19507826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence of intramolecular carbonylation and asymmetric hydrogenation reactions: highly regio- and enantioselective synthesis of medium ring tricyclic lactams.
    Lu SM; Alper H
    J Am Chem Soc; 2008 May; 130(20):6451-5. PubMed ID: 18444651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer-micelle incarcerated scandium as a polymer-supported catalyst for high-throughput organic synthesis.
    Takeuchi M; Akiyama R; Kobayashi S
    J Am Chem Soc; 2005 Sep; 127(38):13096-7. PubMed ID: 16173708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soluble amphiphilic tannin-stabilized Pd(0) nanoparticles: a highly active and selective homogeneous catalyst used in a biphasic catalytic system.
    Huang X; Wang Y; Liao X; Shi B
    Chem Commun (Camb); 2009 Aug; (31):4687-9. PubMed ID: 19641810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput kinetic study of hydrogenation over palladium nanoparticles: combination of reaction and analysis.
    Trapp O; Weber SK; Bauch S; Bäcker T; Hofstadt W; Spliethoff B
    Chemistry; 2008; 14(15):4657-66. PubMed ID: 18384020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New types of soluble polymer-supported bisphosphine ligands with a cyclobutane backbone for Pd-catalyzed enantioselective allylic substitution reactions.
    Zhao D; Sun J; Ding K
    Chemistry; 2004 Nov; 10(23):5952-63. PubMed ID: 15487028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A practical approach for ambient-pressure hydrogenations using Pd on porous glass.
    Schmöger C; Stolle A; Bonrath W; Ondruschka B; Keller T; Jandt KD
    ChemSusChem; 2009; 2(1):77-82. PubMed ID: 19101941
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New palladium(II) and platinum(II) complexes with the model nucleobase 1-methylcytosine: antitumor activity and interactions with DNA.
    Ruiz J; Cutillas N; Vicente C; Villa MD; López G; Lorenzo J; Avilés FX; Moreno V; Bautista D
    Inorg Chem; 2005 Oct; 44(21):7365-76. PubMed ID: 16212362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polysilane-supported Pd and Pt nanoparticles as efficient catalysts for organic synthesis.
    Oyamada H; Akiyama R; Hagio H; Naito T; Kobayashi S
    Chem Commun (Camb); 2006 Nov; (41):4297-9. PubMed ID: 17047846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mizoroki-Heck coupling using immobilized molecular precatalysts: leaching active species from Pd pincers, entrapped Pd salts, and Pd NHC complexes.
    Weck M; Jones CW
    Inorg Chem; 2007 Mar; 46(6):1865-75. PubMed ID: 17348717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pd/C-catalyzed chemoselective hydrogenation in the presence of diphenylsulfide.
    Mori A; Miyakawa Y; Ohashi E; Haga T; Maegawa T; Sajiki H
    Org Lett; 2006 Jul; 8(15):3279-81. PubMed ID: 16836385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.