These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 15075341)

  • 21. Impact of P-Site tRNA and antibiotics on ribosome mediated protein folding: studies using the Escherichia coli ribosome.
    Mondal S; Pathak BK; Ray S; Barat C
    PLoS One; 2014; 9(7):e101293. PubMed ID: 25000563
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of the puromycin reaction. The ribosomal exclusion principle for AcPhe-tRNA binding re-examined.
    Geigenmüller U; Hausner TP; Nierhaus KH
    Eur J Biochem; 1986 Dec; 161(3):715-21. PubMed ID: 3024981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New aspects on the kinetics of activation of ribosomal peptidyltransferase-catalyzed peptide bond formation by monovalent ions and spermine.
    Michelinaki M; Spanos A; Coutsogeorgopoulos C; Kalpaxis DL
    Biochim Biophys Acta; 1997 Oct; 1342(2):182-90. PubMed ID: 9392527
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Slow sequential conformational changes in Escherichia coli ribosomes induced by lincomycin: kinetic evidence.
    Kallia-Raftopoulos S; Kalpaxis DL
    Mol Pharmacol; 1999 Nov; 56(5):1042-6. PubMed ID: 10531411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stepwise binding of tylosin and erythromycin to Escherichia coli ribosomes, characterized by kinetic and footprinting analysis.
    Petropoulos AD; Kouvela EC; Dinos GP; Kalpaxis DL
    J Biol Chem; 2008 Feb; 283(8):4756-65. PubMed ID: 18079110
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in ribosomal activity of Escherichia coli cells during prolonged culture in sea salts medium.
    Kalpaxis DL; Karahalios P; Papapetropoulou M
    J Bacteriol; 1998 Jun; 180(12):3114-9. PubMed ID: 9620960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changes in the conformation of 5S rRNA cause alterations in principal functions of the ribosomal nanomachine.
    Kouvela EC; Gerbanas GV; Xaplanteri MA; Petropoulos AD; Dinos GP; Kalpaxis DL
    Nucleic Acids Res; 2007; 35(15):5108-19. PubMed ID: 17652323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The ribosomal E site at low Mg2+: coordinate inactivation of ribosomal functions at Mg2+ concentrations below 10 mM and its prevention by polyamines.
    Rheinberger HJ; Nierhaus KH
    J Biomol Struct Dyn; 1987 Oct; 5(2):435-46. PubMed ID: 3078235
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The identification of spermine binding sites in 16S rRNA allows interpretation of the spermine effect on ribosomal 30S subunit functions.
    Amarantos I; Zarkadis IK; Kalpaxis DL
    Nucleic Acids Res; 2002 Jul; 30(13):2832-43. PubMed ID: 12087167
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Similarities and differences in the inhibition patterns of thiostrepton and viomycin: evidence for two functionally different populations of P sites when occupied with AcPhe-tRNA.
    Kutay UR; Spahn CM; Nierhaus KH
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):193-6. PubMed ID: 2169893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New aspects of the kinetics of inhibition by lincomycin of peptide bond formation.
    Kallia-Raftopoulos S; Kalpaxis DL; Coutsogeorgopoulos C
    Mol Pharmacol; 1994 Nov; 46(5):1009-14. PubMed ID: 7969063
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Puromycin interacts with the donor (P) site of Escherichia coli ribosomes].
    Ivanov IuV; Saminskiĭ EM
    Mol Biol (Mosk); 1984; 18(5):1301-5. PubMed ID: 6390175
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetics of inhibition of peptide bond formation on bacterial ribosomes.
    Theocharis DA; Synetos D; Kalpaxis DL; Drainas D; Coutsogeorgopoulos C
    Arch Biochem Biophys; 1992 Jan; 292(1):266-72. PubMed ID: 1727642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetics of inhibition of rabbit reticulocyte peptidyltransferase by anisomycin and sparsomycin.
    Ioannou M; Coutsogeorgopoulos C; Synetos D
    Mol Pharmacol; 1998 Jun; 53(6):1089-96. PubMed ID: 9614213
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the mechanism of interaction of N-acetylphenylalanyl-tRNAPhe with ribosomes of Escherichia coli: effect of antibiotics and Tp psi pCpGp.
    Ivanov YV; Grajevskaja RA; Saminsky EM
    Eur J Biochem; 1981 Jan; 113(3):457-61. PubMed ID: 6163626
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies on the catalytic rate constant of ribosomal peptidyltransferase.
    Synetos D; Coutsogeorgopoulos C
    Biochim Biophys Acta; 1987 Feb; 923(2):275-85. PubMed ID: 3545299
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polyamine binding sites on Escherichia coli ribosomes.
    Kakegawa T; Sato E; Hirose S; Igarashi K
    Arch Biochem Biophys; 1986 Dec; 251(2):413-20. PubMed ID: 3541786
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural and functional implications in the eubacterial ribosome as revealed by protein-rRNA and antibiotic contact sites.
    Wittmann-Liebold B; Uhlein M; Urlaub H; Müller EC; Otto A; Bischof O
    Biochem Cell Biol; 1995; 73(11-12):1187-97. PubMed ID: 8722036
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Peptide environment of the peptidyl transferase center from Escherichia coli 70 S ribosomes as determined by thermoaffinity labeling with dihydrospiramycin.
    Bischof O; Urlaub H; Kruft V; Wittmann-Liebold B
    J Biol Chem; 1995 Sep; 270(39):23060-4. PubMed ID: 7559446
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Essential mechanisms in the catalysis of peptide bond formation on the ribosome.
    Beringer M; Bruell C; Xiong L; Pfister P; Bieling P; Katunin VI; Mankin AS; Böttger EC; Rodnina MV
    J Biol Chem; 2005 Oct; 280(43):36065-72. PubMed ID: 16129670
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.