These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 15075399)
21. Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. Nagegowda DA; Gutensohn M; Wilkerson CG; Dudareva N Plant J; 2008 Jul; 55(2):224-39. PubMed ID: 18363779 [TBL] [Abstract][Full Text] [Related]
22. A maize landrace that emits defense volatiles in response to herbivore eggs possesses a strongly inducible terpene synthase gene. Tamiru A; Bruce TJA; Richter A; Woodcock CM; Midega CAO; Degenhardt J; Kelemu S; Pickett JA; Khan ZR Ecol Evol; 2017 Apr; 7(8):2835-2845. PubMed ID: 28428873 [TBL] [Abstract][Full Text] [Related]
23. Rational engineering of plasticity residues of sesquiterpene synthases from Artemisia annua: product specificity and catalytic efficiency. Li JX; Fang X; Zhao Q; Ruan JX; Yang CQ; Wang LJ; Miller DJ; Faraldos JA; Allemann RK; Chen XY; Zhang P Biochem J; 2013 May; 451(3):417-26. PubMed ID: 23438177 [TBL] [Abstract][Full Text] [Related]
24. Demonstration and characterization of (E)-nerolidol synthase from maize: a herbivore-inducible terpene synthase participating in (3E)-4,8-dimethyl-1,3,7-nonatriene biosynthesis. Degenhardt J; Gershenzon J Planta; 2000 Apr; 210(5):815-22. PubMed ID: 10805454 [TBL] [Abstract][Full Text] [Related]
25. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Degenhardt J; Köllner TG; Gershenzon J Phytochemistry; 2009; 70(15-16):1621-37. PubMed ID: 19793600 [TBL] [Abstract][Full Text] [Related]
27. Evolution of TPS20-related terpene synthases influences chemical diversity in the glandular trichomes of the wild tomato relative Solanum habrochaites. Gonzales-Vigil E; Hufnagel DE; Kim J; Last RL; Barry CS Plant J; 2012 Sep; 71(6):921-35. PubMed ID: 22563774 [TBL] [Abstract][Full Text] [Related]
28. Localization of sesquiterpene formation and emission in maize leaves after herbivore damage. Köllner TG; Lenk C; Schnee C; Köpke S; Lindemann P; Gershenzon J; Degenhardt J BMC Plant Biol; 2013 Jan; 13():15. PubMed ID: 23363415 [TBL] [Abstract][Full Text] [Related]
29. Maize cDNAs expressed in endosperm encode functional farnesyl diphosphate synthase with geranylgeranyl diphosphate synthase activity. Cervantes-Cervantes M; Gallagher CE; Zhu C; Wurtzel ET Plant Physiol; 2006 May; 141(1):220-31. PubMed ID: 16581875 [TBL] [Abstract][Full Text] [Related]
30. Sesquiterpene synthases from grand fir (Abies grandis). Comparison of constitutive and wound-induced activities, and cDNA isolation, characterization, and bacterial expression of delta-selinene synthase and gamma-humulene synthase. Steele CL; Crock J; Bohlmann J; Croteau R J Biol Chem; 1998 Jan; 273(4):2078-89. PubMed ID: 9442047 [TBL] [Abstract][Full Text] [Related]
31. Functional characterization of ZmTPS7 reveals a maize τ-cadinol synthase involved in stress response. Ren F; Mao H; Liang J; Liu J; Shu K; Wang Q Planta; 2016 Nov; 244(5):1065-1074. PubMed ID: 27421723 [TBL] [Abstract][Full Text] [Related]
33. Protonation of a neutral (S)-beta-bisabolene intermediate is involved in (S)-beta-macrocarpene formation by the maize sesquiterpene synthases TPS6 and TPS11. Köllner TG; Schnee C; Li S; Svatos A; Schneider B; Gershenzon J; Degenhardt J J Biol Chem; 2008 Jul; 283(30):20779-88. PubMed ID: 18524777 [TBL] [Abstract][Full Text] [Related]
34. Rational conversion of substrate and product specificity in a Salvia monoterpene synthase: structural insights into the evolution of terpene synthase function. Kampranis SC; Ioannidis D; Purvis A; Mahrez W; Ninga E; Katerelos NA; Anssour S; Dunwell JM; Degenhardt J; Makris AM; Goodenough PW; Johnson CB Plant Cell; 2007 Jun; 19(6):1994-2005. PubMed ID: 17557809 [TBL] [Abstract][Full Text] [Related]
35. A single amino acid determines the site of deprotonation in the active center of sesquiterpene synthases SbTPS1 and SbTPS2 from Sorghum bicolor. Garms S; Chen F; Boland W; Gershenzon J; Köllner TG Phytochemistry; 2012 Mar; 75():6-13. PubMed ID: 22226036 [TBL] [Abstract][Full Text] [Related]
36. De novo formation of an aggregation pheromone precursor by an isoprenyl diphosphate synthase-related terpene synthase in the harlequin bug. Lancaster J; Khrimian A; Young S; Lehner B; Luck K; Wallingford A; Ghosh SKB; Zerbe P; Muchlinski A; Marek PE; Sparks ME; Tokuhisa JG; Tittiger C; Köllner TG; Weber DC; Gundersen-Rindal DE; Kuhar TP; Tholl D Proc Natl Acad Sci U S A; 2018 Sep; 115(37):E8634-E8641. PubMed ID: 30139915 [TBL] [Abstract][Full Text] [Related]
37. The santalene synthase from Cinnamomum camphora: Reconstruction of a sesquiterpene synthase from a monoterpene synthase. Di Girolamo A; Durairaj J; van Houwelingen A; Verstappen F; Bosch D; Cankar K; Bouwmeester H; de Ridder D; van Dijk ADJ; Beekwilder J Arch Biochem Biophys; 2020 Nov; 695():108647. PubMed ID: 33121934 [TBL] [Abstract][Full Text] [Related]
38. Molecular characterization of the thi3 gene involved in thiamine biosynthesis in Zea mays: cDNA sequence and enzymatic and structural properties of the recombinant bifunctional protein with 4-amino-5-hydroxymethyl-2-methylpyrimidine (phosphate) kinase and thiamine monophosphate synthase activities. Rapala-Kozik M; Olczak M; Ostrowska K; Starosta A; Kozik A Biochem J; 2007 Dec; 408(2):149-59. PubMed ID: 17696876 [TBL] [Abstract][Full Text] [Related]
40. Direct production of dihydroxylated sesquiterpenoids by a maize terpene synthase. Liang J; Liu J; Brown R; Jia M; Zhou K; Peters RJ; Wang Q Plant J; 2018 Jun; 94(5):847-856. PubMed ID: 29570233 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]