BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 15075404)

  • 21. Investigation of cosolute-protein preferential interaction coefficients: new insight into the mechanism by which arginine inhibits aggregation.
    Schneider CP; Trout BL
    J Phys Chem B; 2009 Feb; 113(7):2050-8. PubMed ID: 19199688
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Calculation of weak protein-protein interactions: the pH dependence of the second virial coefficient.
    Elcock AH; McCammon JA
    Biophys J; 2001 Feb; 80(2):613-25. PubMed ID: 11159430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Osmotic second virial cross-coefficient measurements for binary combination of lysozyme, ovalbumin, and α-amylase in salt solutions.
    Mehta CM; White ET; Litster JD
    Biotechnol Prog; 2013; 29(5):1203-11. PubMed ID: 23804362
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The osmotic pressure of highly concentrated monoclonal antibody solutions: effect of solution conditions.
    Binabaji E; Rao S; Zydney AL
    Biotechnol Bioeng; 2014 Mar; 111(3):529-36. PubMed ID: 23996891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-interaction chromatography in pre-packed columns: a critical evaluation of self-interaction chromatography methodology to determine the second virial coefficient.
    Rakel N; Schleining K; Dismer F; Hubbuch J
    J Chromatogr A; 2013 Jun; 1293():75-84. PubMed ID: 23642769
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A mesoscopic model for protein-protein interactions in solution.
    Lund M; Jönsson B
    Biophys J; 2003 Nov; 85(5):2940-7. PubMed ID: 14581196
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lysozyme-lysozyme self-interactions as assessed by the osmotic second virial coefficient: impact for physical protein stabilization.
    Le Brun V; Friess W; Schultz-Fademrecht T; Muehlau S; Garidel P
    Biotechnol J; 2009 Sep; 4(9):1305-19. PubMed ID: 19579219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved method for evaluating the dead volume and protein-protein interactions by self-interaction chromatography.
    Binabaji E; Rao S; Zydney AL
    Anal Chem; 2013 Oct; 85(19):9101-6. PubMed ID: 23971517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. From surface self-assembly to crystallization: prediction of protein crystallization conditions.
    Jia Y; Liu XY
    J Phys Chem B; 2006 Apr; 110(13):6949-55. PubMed ID: 16571007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Light-scattering studies of protein solutions: role of hydration in weak protein-protein interactions.
    Paliwal A; Asthagiri D; Abras D; Lenhoff AM; Paulaitis ME
    Biophys J; 2005 Sep; 89(3):1564-73. PubMed ID: 15980182
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein self-interaction chromatography on a microchip.
    Deshpande K; Ahamed T; van der Wielen LA; Horst JH; Jansens PJ; Ottens M
    Lab Chip; 2009 Feb; 9(4):600-5. PubMed ID: 19190796
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A multisolute osmotic virial equation for solutions of interest in biology.
    Elliott JA; Prickett RC; Elmoazzen HY; Porter KR; McGann LE
    J Phys Chem B; 2007 Feb; 111(7):1775-85. PubMed ID: 17266364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrophobic interaction chromatography of proteins. II. Solution thermodynamic properties as a determinant of retention.
    To BC; Lenhoff AM
    J Chromatogr A; 2007 Feb; 1141(2):235-43. PubMed ID: 17207494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inclusion of mPRISM potential for polymer-induced protein interactions enables modeling of second osmotic virial coefficients in aqueous polymer-salt solutions.
    Herhut M; Brandenbusch C; Sadowski G
    Biotechnol J; 2016 Jan; 11(1):146-54. PubMed ID: 26250594
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nonequivalence of second virial coefficients from sedimentation equilibrium and static light scattering studies of protein solutions.
    Winzor DJ; Deszczynski M; Harding SE; Wills PR
    Biophys Chem; 2007 Jun; 128(1):46-55. PubMed ID: 17382457
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Method qualification and application of diffusion interaction parameter and virial coefficient.
    Shi S; Uchida M; Cheung J; Antochshuk V; Shameem M
    Int J Biol Macromol; 2013 Nov; 62():487-93. PubMed ID: 24095715
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermodynamic nonideality in macromolecular solutions: interpretation of virial coefficients.
    Wills PR; Comper WD; Winzor DJ
    Arch Biochem Biophys; 1993 Jan; 300(1):206-12. PubMed ID: 8424654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-interaction nanoparticle spectroscopy: a nanoparticle-based protein interaction assay.
    Tessier PM; Jinkoji J; Cheng YC; Prentice JL; Lenhoff AM
    J Am Chem Soc; 2008 Mar; 130(10):3106-12. PubMed ID: 18271584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein crystallization by design: chymotrypsinogen without precipitants.
    Pjura PE; Lenhoff AM; Leonard SA; Gittis AG
    J Mol Biol; 2000 Jul; 300(2):235-9. PubMed ID: 10873462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of self-interaction chromatography as an analytical tool for predicting protein phase behavior.
    Ahamed T; Ottens M; van Dedem GW; van der Wielen LA
    J Chromatogr A; 2005 Sep; 1089(1-2):111-24. PubMed ID: 16130779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.