These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 15075408)

  • 1. Monomer topology defines folding speed of heptamer.
    Bascos N; Guidry J; Wittung-Stafshede P
    Protein Sci; 2004 May; 13(5):1317-21. PubMed ID: 15075408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the interface in a human co-chaperonin heptamer: residues disrupting oligomeric unfolded state identified.
    Guidry JJ; Shewmaker F; Maskos K; Landry S; Wittung-Stafshede P
    BMC Biochem; 2003 Oct; 4():14. PubMed ID: 14525625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible denaturation of oligomeric human chaperonin 10: denatured state depends on chemical denaturant.
    Guidry JJ; Moczygemba CK; Steede NK; Landry SJ; Wittung-Stafshede P
    Protein Sci; 2000 Nov; 9(11):2109-17. PubMed ID: 11152122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folding and assembly of co-chaperonin heptamer probed by forster resonance energy transfer.
    Perham M; Wittung-Stafshede P
    Arch Biochem Biophys; 2007 Aug; 464(2):306-13. PubMed ID: 17521602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unfolding of heptameric co-chaperonin protein follows "fly casting" mechanism: observation of transient nonnative heptamer.
    Perham M; Chen M; Ma J; Wittung-Stafshede P
    J Am Chem Soc; 2005 Nov; 127(47):16402-3. PubMed ID: 16305220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic folding and assembly mechanisms differ for two homologous heptamers.
    Luke K; Perham M; Wittung-Stafshede P
    J Mol Biol; 2006 Oct; 363(3):729-42. PubMed ID: 16979655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interface mutation in heptameric co-chaperonin protein 10 destabilizes subunits but not interfaces.
    Brown C; Liao J; Wittung-Stafshede P
    Arch Biochem Biophys; 2005 Jul; 439(2):175-83. PubMed ID: 15978542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Folding and assembly pathways of co-chaperonin proteins 10: Origin of bacterial thermostability.
    Luke K; Wittung-Stafshede P
    Arch Biochem Biophys; 2006 Dec; 456(1):8-18. PubMed ID: 17084377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macromolecular crowding extended to a heptameric system: the Co-chaperonin protein 10.
    Aguilar X; F Weise C; Sparrman T; Wolf-Watz M; Wittung-Stafshede P
    Biochemistry; 2011 Apr; 50(14):3034-44. PubMed ID: 21375247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the conformational state and in vitro refolding of yeast chaperonin protein cpn10 with bacterial GroES.
    de Jongh HH; Rospert S; Dobson CM
    Biochem Biophys Res Commun; 1998 Mar; 244(3):884-8. PubMed ID: 9535761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unfolding and refolding of Escherichia coli chaperonin GroES is expressed by a three-state model.
    Higurashi T; Nosaka K; Mizobata T; Nagai J; Kawata Y
    J Mol Biol; 1999 Aug; 291(3):703-13. PubMed ID: 10448048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the unique peptide tail in hyperthermostable Aquifex aeolicus cochaperonin protein 10.
    Luke K; Apiyo D; Wittung-Stafshede P
    Biochemistry; 2005 Nov; 44(44):14385-95. PubMed ID: 16262239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural stability of oligomeric chaperonin 10: the role of two beta-strands at the N and C termini in structural stabilization.
    Sakane I; Ikeda M; Matsumoto C; Higurashi T; Inoue K; Hongo K; Mizobata T; Kawata Y
    J Mol Biol; 2004 Dec; 344(4):1123-33. PubMed ID: 15544816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural stability of covalently linked GroES heptamer: advantages in the formation of oligomeric structure.
    Sakane I; Hongo K; Motojima F; Murayama S; Mizobata T; Kawata Y
    J Mol Biol; 2007 Apr; 367(4):1171-85. PubMed ID: 17303164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of Mycobacterium tuberculosis chaperonin-10 at 3.5 A resolution.
    Taneja B; Mande SC
    Acta Crystallogr D Biol Crystallogr; 2002 Feb; 58(Pt 2):260-6. PubMed ID: 11807250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural stability and solution structure of chaperonin GroES heptamer studied by synchrotron small-angle X-ray scattering.
    Higurashi T; Hiragi Y; Ichimura K; Seki Y; Soda K; Mizobata T; Kawata Y
    J Mol Biol; 2003 Oct; 333(3):605-20. PubMed ID: 14556748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the folding and unfolding reactions of single-chain monellin: evidence for multiple intermediates and competing pathways.
    Patra AK; Udgaonkar JB
    Biochemistry; 2007 Oct; 46(42):11727-43. PubMed ID: 17902706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the folding and unfolding reactions of a small beta-barrel protein of novel topology, the MTCP1 oncogene product P13.
    Roumestand C; Boyer M; Guignard L; Barthe P; Royer CA
    J Mol Biol; 2001 Sep; 312(1):247-59. PubMed ID: 11545600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First characterization of co-chaperonin protein 10 from hyper-thermophilic Aquifex aeolicus.
    Guidry J; Wittung-Stafshede P
    Biochem Biophys Res Commun; 2004 Apr; 317(1):176-80. PubMed ID: 15047164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.