BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 15075621)

  • 21. Discriminative stimulus effects of CP 55,940 and structurally dissimilar cannabinoids in rats.
    Wiley JL; Barrett RL; Lowe J; Balster RL; Martin BR
    Neuropharmacology; 1995 Jun; 34(6):669-76. PubMed ID: 7566504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The cannabinoid agonist HU-210: pseudo-irreversible discriminative stimulus effects in rhesus monkeys.
    Hruba L; McMahon LR
    Eur J Pharmacol; 2014 Mar; 727():35-42. PubMed ID: 24486701
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cross-tolerance to cannabinoids in morphine-tolerant rhesus monkeys.
    Gerak LR; Zanettini C; Koek W; France CP
    Psychopharmacology (Berl); 2015 Oct; 232(19):3637-47. PubMed ID: 26202613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Behavioral, biochemical, and molecular modeling evaluations of cannabinoid analogs.
    Martin BR; Compton DR; Thomas BF; Prescott WR; Little PJ; Razdan RK; Johnson MR; Melvin LS; Mechoulam R; Ward SJ
    Pharmacol Biochem Behav; 1991 Nov; 40(3):471-8. PubMed ID: 1666911
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cannabinoid-improgan cross-tolerance: Improgan is a cannabinomimetic analgesic lacking affinity at the cannabinoid CB1 receptor.
    Nalwalk JW; Svokos K; Hough LB
    Eur J Pharmacol; 2006 Nov; 549(1-3):79-83. PubMed ID: 16989809
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chronic cannabinoid administration alters cannabinoid receptor binding in rat brain: a quantitative autoradiographic study.
    Oviedo A; Glowa J; Herkenham M
    Brain Res; 1993 Jul; 616(1-2):293-302. PubMed ID: 8395305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Internalization and recycling of the CB1 cannabinoid receptor.
    Hsieh C; Brown S; Derleth C; Mackie K
    J Neurochem; 1999 Aug; 73(2):493-501. PubMed ID: 10428044
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cannabinoid agonists differentially substitute for the discriminative stimulus effects of Delta(9)-tetrahydrocannabinol in C57BL/6J mice.
    McMahon LR; Ginsburg BC; Lamb RJ
    Psychopharmacology (Berl); 2008 Jul; 198(4):487-95. PubMed ID: 17673980
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of chronic administration of R-(+)-[2,3-Dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl)methanone mesylate (WIN55,212-2) or delta(9)-tetrahydrocannabinol on cannabinoid receptor adaptation in mice.
    Sim-Selley LJ; Martin BR
    J Pharmacol Exp Ther; 2002 Oct; 303(1):36-44. PubMed ID: 12235230
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antiemetic and motor-depressive actions of CP55,940: cannabinoid CB1 receptor characterization, distribution, and G-protein activation.
    Darmani NA; Sim-Selley LJ; Martin BR; Janoyan JJ; Crim JL; Parekh B; Breivogel CS
    Eur J Pharmacol; 2003 Jan; 459(1):83-95. PubMed ID: 12505537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pronociceptive effects of spinal dynorphin promote cannabinoid-induced pain and antinociceptive tolerance.
    Gardell LR; Burgess SE; Dogrul A; Ossipov MH; Malan TP; Lai J; Porreca F
    Pain; 2002 Jul; 98(1-2):79-88. PubMed ID: 12098619
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of the respiratory effects of cannabinoids in rats.
    Schmid K; Niederhoffer N; Szabo B
    Naunyn Schmiedebergs Arch Pharmacol; 2003 Oct; 368(4):301-8. PubMed ID: 13680088
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cannabinoids inhibit excitatory inputs to neurons in the shell of the nucleus accumbens: an in vivo electrophysiological study.
    Pistis M; Muntoni AL; Pillolla G; Gessa GL
    Eur J Neurosci; 2002 Jun; 15(11):1795-802. PubMed ID: 12081659
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CB1 cannabinoid receptor agonists increase intracranial self-stimulation thresholds in the rat.
    Vlachou S; Nomikos GG; Panagis G
    Psychopharmacology (Berl); 2005 May; 179(2):498-508. PubMed ID: 15821959
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabotropic and NMDA glutamate receptors participate in the cannabinoid-induced antinociception.
    Palazzo E; Marabese I; de Novellis V; Oliva P; Rossi F; Berrino L; Rossi F; Maione S
    Neuropharmacology; 2001 Mar; 40(3):319-26. PubMed ID: 11166324
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antihyperalgesic properties of the cannabinoid CT-3 in chronic neuropathic and inflammatory pain states in the rat.
    Dyson A; Peacock M; Chen A; Courade JP; Yaqoob M; Groarke A; Brain C; Loong Y; Fox A
    Pain; 2005 Jul; 116(1-2):129-37. PubMed ID: 15936883
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cannabinoid-induced changes in respiration of brain mitochondria.
    Fišar Z; Singh N; Hroudová J
    Toxicol Lett; 2014 Nov; 231(1):62-71. PubMed ID: 25195527
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cannabinoids ablate release of TNFalpha in rat microglial cells stimulated with lypopolysaccharide.
    Facchinetti F; Del Giudice E; Furegato S; Passarotto M; Leon A
    Glia; 2003 Jan; 41(2):161-8. PubMed ID: 12509806
    [TBL] [Abstract][Full Text] [Related]  

  • 39. WIN 55212-2 impairs contextual fear conditioning through the activation of CB1 cannabinoid receptors.
    Pamplona FA; Takahashi RN
    Neurosci Lett; 2006 Apr 10-17; 397(1-2):88-92. PubMed ID: 16406322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonclassical and endogenous cannabinoids: effects on the ordering of brain membranes.
    Bloom AS; Edgemond WS; Moldvan JC
    Neurochem Res; 1997 May; 22(5):563-8. PubMed ID: 9131634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.