These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 15077119)

  • 1. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants.
    Barac T; Taghavi S; Borremans B; Provoost A; Oeyen L; Colpaert JV; Vangronsveld J; van der Lelie D
    Nat Biotechnol; 2004 May; 22(5):583-8. PubMed ID: 15077119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination.
    Weyens N; Croes S; Dupae J; Newman L; van der Lelie D; Carleer R; Vangronsveld J
    Environ Pollut; 2010 Jul; 158(7):2422-7. PubMed ID: 20462680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation.
    Weyens N; van der Lelie D; Artois T; Smeets K; Taghavi S; Newman L; Carleer R; Vangronsveld J
    Environ Sci Technol; 2009 Dec; 43(24):9413-8. PubMed ID: 20000537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene.
    Taghavi S; Barac T; Greenberg B; Borremans B; Vangronsveld J; van der Lelie D
    Appl Environ Microbiol; 2005 Dec; 71(12):8500-5. PubMed ID: 16332840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoremediation: plant-endophyte partnerships take the challenge.
    Weyens N; van der Lelie D; Taghavi S; Vangronsveld J
    Curr Opin Biotechnol; 2009 Apr; 20(2):248-54. PubMed ID: 19327979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endophytes and their potential to deal with co-contamination of organic contaminants (toluene) and toxic metals (nickel) during phytoremediation.
    Weyens N; Truyens S; Saenen E; Boulet J; Dupae J; Taghavi S; van der Lelie D; Carleer R; Vangronsveld J
    Int J Phytoremediation; 2011 Mar; 13(3):244-55. PubMed ID: 21598790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate.
    Kang JW; Doty SL
    Can J Microbiol; 2014 Jul; 60(7):487-90. PubMed ID: 24992516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Teamwork in phytoremediation.
    Glick BR
    Nat Biotechnol; 2004 May; 22(5):526-7. PubMed ID: 15122290
    [No Abstract]   [Full Text] [Related]  

  • 9. Phytoremediation of organic contaminants in soil and groundwater.
    Reichenauer TG; Germida JJ
    ChemSusChem; 2008; 1(8-9):708-17. PubMed ID: 18698569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics.
    Abhilash PC; Jamil S; Singh N
    Biotechnol Adv; 2009; 27(4):474-88. PubMed ID: 19371778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Horizontal transfer of genetic determinants for degradation of phenol between the bacteria living in plant and its rhizosphere.
    Wang Y; Xiao M; Geng X; Liu J; Chen J
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):733-9. PubMed ID: 17938913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation.
    Moore FP; Barac T; Borremans B; Oeyen L; Vangronsveld J; van der Lelie D; Campbell CD; Moore ER
    Syst Appl Microbiol; 2006 Nov; 29(7):539-56. PubMed ID: 16919907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing trichloroethylene degradation using non-aromatic compounds as growth substrates.
    Kim S; Hwang J; Chung J; Bae W
    J Hazard Mater; 2014 Jun; 275():99-106. PubMed ID: 24857894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants.
    Afzal M; Khan QM; Sessitsch A
    Chemosphere; 2014 Dec; 117():232-42. PubMed ID: 25078615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection of a Pseudomonas cepacia strain constitutive for the degradation of trichloroethylene.
    Shields MS; Reagin MJ
    Appl Environ Microbiol; 1992 Dec; 58(12):3977-83. PubMed ID: 1282314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced kinetics of genetically engineered Burkholderia cepacia: the role of vgb in the hypoxic metabolism of 2-CBA.
    Urgun-Demirtas M; Pagilla KR; Stark BC
    Biotechnol Bioeng; 2004 Jul; 87(1):110-8. PubMed ID: 15211495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection and application of endophytic bacterium Achromobacter xylosoxidans strain F3B for improving phytoremediation of phenolic pollutants.
    Ho YN; Mathew DC; Hsiao SC; Shih CH; Chien MF; Chiang HM; Huang CC
    J Hazard Mater; 2012 Jun; 219-220():43-9. PubMed ID: 22497718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacteria and phytoremediation: new uses for endophytic bacteria in plants.
    Newman LA; Reynolds CM
    Trends Biotechnol; 2005 Jan; 23(1):6-8; discussion 8-9. PubMed ID: 15629849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Uptake, transformation and degradation of organic pollutants in transgenic plants].
    Hu GZ; Wang YF; He YK
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2005 Aug; 31(4):340-6. PubMed ID: 16121003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Absorption of a mixture of volatile organic compounds (VOCs) in aqueous solutions of soluble cutting oil.
    Lalanne F; Malhautier L; Roux JC; Fanlo JL
    Bioresour Technol; 2008 Apr; 99(6):1699-707. PubMed ID: 17513105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.