BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 15077165)

  • 21. A novel human ERK phosphatase regulates H-ras and v-raf signal transduction.
    Shin DY; Ishibashi T; Choi TS; Chung E; Chung IY; Aaronson SA; Bottaro DP
    Oncogene; 1997 Jun; 14(22):2633-9. PubMed ID: 9178761
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transformation-restoring factor: a low molecular weight secreted factor required for anchorage-independent growth of oncogene-resistant mutant cell lines.
    Yang JJ; Kang JS; Krauss RS
    Oncogene; 1995 Apr; 10(7):1291-9. PubMed ID: 7731679
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ral promotes anchorage-independent growth of a human fibrosarcoma, HT1080.
    Yamazaki Y; Kaziro Y; Koide H
    Biochem Biophys Res Commun; 2001 Jan; 280(3):868-73. PubMed ID: 11162603
    [TBL] [Abstract][Full Text] [Related]  

  • 24. K-Ras promotes growth transformation and invasion of immortalized human pancreatic cells by Raf and phosphatidylinositol 3-kinase signaling.
    Campbell PM; Groehler AL; Lee KM; Ouellette MM; Khazak V; Der CJ
    Cancer Res; 2007 Mar; 67(5):2098-106. PubMed ID: 17332339
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immortalized fibroblasts from NF-kappaB RelA knockout mice show phenotypic heterogeneity and maintain increased sensitivity to tumor necrosis factor alpha after transformation by v-Ras.
    Gapuzan ME; Schmah O; Pollock AD; Hoffmann A; Gilmore TD
    Oncogene; 2005 Sep; 24(43):6574-83. PubMed ID: 16027734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dissociation of ras oncogene-induced gene expression and anchorage-independent growth in a series of somatic cell mutants.
    Feinleib JL; Krauss RS
    Mol Carcinog; 1996 Jul; 16(3):139-48. PubMed ID: 8688149
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stepwise neoplastic transformation of a telomerase immortalized fibroblast cell line.
    Zongaro S; de Stanchina E; Colombo T; D'Incalci M; Giulotto E; Mondello C
    Cancer Res; 2005 Dec; 65(24):11411-8. PubMed ID: 16357149
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Downstream of Crk adaptor signaling pathway: activation of Jun kinase by v-Crk through the guanine nucleotide exchange protein C3G.
    Tanaka S; Ouchi T; Hanafusa H
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2356-61. PubMed ID: 9122199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Ras-MAPK pathway downregulates Caveolin-1 in rodent fibroblast but not in human fibroblasts: implications in the resistance to oncogene-mediated transformation.
    Sasai K; Kakumoto K; Hanafusa H; Akagi T
    Oncogene; 2007 Jan; 26(3):449-55. PubMed ID: 16832346
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rap1 mutants with increased affinity for the guanine-nucleotide exchange factor C3G.
    Shi S; Noda M; Kitayama H
    Oncogene; 2004 Nov; 23(54):8711-9. PubMed ID: 15480424
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The association of CRKII with C3G can be regulated by integrins and defines a novel means to regulate the mitogen-activated protein kinases.
    Buensuceso CS; O'Toole TE
    J Biol Chem; 2000 Apr; 275(17):13118-25. PubMed ID: 10777617
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Phosphorylation status of merlin is important for regulating the Ras-ERK pathway.
    Jung JR; Kim H; Jeun SS; Lee JY; Koh EJ; Ji C
    Mol Cells; 2005 Oct; 20(2):196-200. PubMed ID: 16267393
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oncogenic Ras-mediated downregulation of Gadd153/CHOP is required for Ras-induced cellular transformation.
    Rong R; Montalbano J; Jin W; Zhang J; Garling M; Sheikh MS; Huang Y
    Oncogene; 2005 Jul; 24(30):4867-72. PubMed ID: 15870698
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Signalling to actin: role of C3G, a multitasking guanine-nucleotide-exchange factor.
    Radha V; Mitra A; Dayma K; Sasikumar K
    Biosci Rep; 2011 Aug; 31(4):231-44. PubMed ID: 21366540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of cell growth by lovastatin is independent of ras function.
    DeClue JE; Vass WC; Papageorge AG; Lowy DR; Willumsen BM
    Cancer Res; 1991 Jan; 51(2):712-7. PubMed ID: 1985788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oncogenic Ras, but not (V600E)B-RAF, protects from cholesterol depletion-induced apoptosis through the PI3K/AKT pathway in colorectal cancer cells.
    Calleros L; Sánchez-Hernández I; Baquero P; Toro MJ; Chiloeches A
    Carcinogenesis; 2009 Oct; 30(10):1670-7. PubMed ID: 19700418
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of cytokinesis and akt phosphorylation by chaetoglobosin K in ras-transformed epithelial cells.
    Matesic DF; Villio KN; Folse SL; Garcia EL; Cutler SJ; Cutler HG
    Cancer Chemother Pharmacol; 2006 Jun; 57(6):741-54. PubMed ID: 16254733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oncogenic Ras upregulates NADPH oxidase 1 gene expression through MEK-ERK-dependent phosphorylation of GATA-6.
    Adachi Y; Shibai Y; Mitsushita J; Shang WH; Hirose K; Kamata T
    Oncogene; 2008 Aug; 27(36):4921-32. PubMed ID: 18454176
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RhoE inhibits cell cycle progression and Ras-induced transformation.
    Villalonga P; Guasch RM; Riento K; Ridley AJ
    Mol Cell Biol; 2004 Sep; 24(18):7829-40. PubMed ID: 15340047
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple aspects of the phenotype of mammary epithelial cells transformed by expression of activated M-Ras depend on an autocrine mechanism mediated by hepatocyte growth factor/scatter factor.
    Zhang KX; Ward KR; Schrader JW
    Mol Cancer Res; 2004 Apr; 2(4):242-55. PubMed ID: 15140946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.