BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 15077977)

  • 1. Technical development of UV-C- and VUV-photochemically induced oxidative degradation processes.
    Braun AM; Pintori IG; Popp HP; Wakahata Y; Wörner M
    Water Sci Technol; 2004; 49(4):235-40. PubMed ID: 15077977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved vacuum-UV (VUV)-initiated photomineralization of organic compounds in water with a xenon excimer flow-through photoreactor (Xe2* lamp, 172 nm) containing an axially centered ceramic oxygenator.
    Oppenländer T; Walddörfer C; Burgbacher J; Kiermeier M; Lachner K; Weinschrott H
    Chemosphere; 2005 Jul; 60(3):302-9. PubMed ID: 15924948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochemical oxidation of As(III) by vacuum-UV lamp irradiation.
    Yoon SH; Lee JH; Oh S; Yang JE
    Water Res; 2008 Jul; 42(13):3455-63. PubMed ID: 18514252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How to assess chemical oxidation efficiency.
    Bertanza G; Pedrazzani R
    Water Sci Technol; 2004; 49(4):1-6. PubMed ID: 15077939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ electrochemical and photo-electrochemical generation of the fenton reagent: a potentially important new water treatment technology.
    Peralta-Hernández JM; Meas-Vong Y; Rodríguez FJ; Chapman TW; Maldonado MI; Godínez LA
    Water Res; 2006 May; 40(9):1754-62. PubMed ID: 16626778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined advanced oxidation and biological treatment processes for the removal of pesticides from aqueous solutions.
    Lafi WK; Al-Qodah Z
    J Hazard Mater; 2006 Sep; 137(1):489-97. PubMed ID: 16616414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solar photocatalytic oxidation of pretreated wastewaters: laboratory scale generation of design data for technical-scale double-skin sheet reactors.
    Gulyas H; Jain HB; Susanto AL; Malekpur M; Harasiuk K; Krawczyk I; Choromanski P; Furmanska M
    Environ Technol; 2005 May; 26(5):501-14. PubMed ID: 15974268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of picloram by the electro-Fenton process.
    Ozcan A; Sahin Y; Koparal AS; Oturan MA
    J Hazard Mater; 2008 May; 153(1-2):718-27. PubMed ID: 17935883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photocatalytic oxidation of 2,4,6-trichlorophenol in water using a cocurrent downflow contactor reactor (CDCR).
    Ochuma IJ; Fishwick RP; Wood J; Winterbottom JM
    J Hazard Mater; 2007 Jun; 144(3):627-33. PubMed ID: 17320288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental study of the degradation of 2,4-D induced by vacuum-UV radiation.
    Imoberdorf GE; Mohseni M
    Water Sci Technol; 2011; 63(7):1427-33. PubMed ID: 21508546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoelectrochemical treatment of landfill leachate in a continuous flow reactor.
    Zhao X; Qu J; Liu H; Wang C; Xiao S; Liu R; Liu P; Lan H; Hu C
    Bioresour Technol; 2010 Feb; 101(3):865-9. PubMed ID: 19796936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced oxidation treatment of pulp mill effluent for TOC and toxicity removals.
    Catalkaya EC; Kargi F
    J Environ Manage; 2008 May; 87(3):396-404. PubMed ID: 17360100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photooxidative treatment of sulfurous water for its potabilization.
    Hernández F; Geissler G
    Photochem Photobiol; 2005; 81(3):636-40. PubMed ID: 15745428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of 2,4-dichlorophenol in aqueous solution by a hybrid oxidation process.
    Li XZ; Zhao BX; Wang P
    J Hazard Mater; 2007 Aug; 147(1-2):281-7. PubMed ID: 17267103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of natural organic matter in surface water using vacuum-UV irradiation.
    Imoberdorf G; Mohseni M
    J Hazard Mater; 2011 Feb; 186(1):240-6. PubMed ID: 21122985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of various advanced oxidation processes for the degradation of 4-chloro-2 nitrophenol.
    Saritha P; Aparna C; Himabindu V; Anjaneyulu Y
    J Hazard Mater; 2007 Nov; 149(3):609-14. PubMed ID: 17703880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical treatment of the effluent of a fine chemical manufacturing plant.
    Cañizares P; Paz R; Lobato J; Sáez C; Rodrigo MA
    J Hazard Mater; 2006 Nov; 138(1):173-81. PubMed ID: 16806682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical treatment of aqueous wastes containing pyrogallol by BDD-anodic oxidation.
    Nasr B; Hsen T; Abdellatif G
    J Environ Manage; 2009 Jan; 90(1):523-30. PubMed ID: 18336990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactor scale-up in AOPs: from laboratory to commercial scale.
    Zalazar CS; Labas MD; Martín CA; Brandi RJ; Cassano AE
    Water Sci Technol; 2004; 49(4):13-8. PubMed ID: 15077941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes.
    Cañizares P; Lobato J; Paz R; Rodrigo MA; Sáez C
    Water Res; 2005 Jul; 39(12):2687-703. PubMed ID: 15979123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.