BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 15078100)

  • 41. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects.
    Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD
    Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A pH switch affects the steady-state kinetic mechanism of pyranose 2-oxidase from Trametes ochracea.
    Rungsrisuriyachai K; Gadda G
    Arch Biochem Biophys; 2009 Mar; 483(1):10-5. PubMed ID: 19146821
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Candidate Antimalarial Drug MMV665909 Causes Oxygen-Dependent mRNA Mistranslation and Synergizes with Quinoline-Derived Antimalarials.
    Vallières C; Avery SV
    Antimicrob Agents Chemother; 2017 Sep; 61(9):. PubMed ID: 28652237
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanism-based inhibitors of cytokinin oxidase/dehydrogenase attack FAD cofactor.
    Kopecný D; Sebela M; Briozzo P; Spíchal L; Houba-Hérin N; Masek V; Joly N; Madzak C; Anzenbacher P; Laloue M
    J Mol Biol; 2008 Jul; 380(5):886-99. PubMed ID: 18571199
    [TBL] [Abstract][Full Text] [Related]  

  • 45. X-ray structural studies of quinone reductase 2 nanomolar range inhibitors.
    Pegan SD; Sturdy M; Ferry G; Delagrange P; Boutin JA; Mesecar AD
    Protein Sci; 2011 Jul; 20(7):1182-95. PubMed ID: 21538647
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chloroquine binding reveals flavin redox switch function of quinone reductase 2.
    Leung KK; Shilton BH
    J Biol Chem; 2013 Apr; 288(16):11242-51. PubMed ID: 23471972
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Half-of-sites binding of orotidine 5'-phosphate and alpha-D-5-phosphorylribose 1-diphosphate to orotate phosphoribosyltransferase from Saccharomyces cerevisiae supports a novel variant of the Theorell-Chance mechanism with alternating site catalysis.
    McClard RW; Holets EA; MacKinnon AL; Witte JF
    Biochemistry; 2006 Apr; 45(16):5330-42. PubMed ID: 16618122
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion.
    Frerichs-Deeken U; Ranguelova K; Kappl R; Hüttermann J; Fetzner S
    Biochemistry; 2004 Nov; 43(45):14485-99. PubMed ID: 15533053
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Crystal structures of human Delta4-3-ketosteroid 5beta-reductase (AKR1D1) reveal the presence of an alternative binding site responsible for substrate inhibition.
    Faucher F; Cantin L; Luu-The V; Labrie F; Breton R
    Biochemistry; 2008 Dec; 47(51):13537-46. PubMed ID: 19075558
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Recent developments in naturally derived antimalarials: cryptolepine analogues.
    Wright CW
    J Pharm Pharmacol; 2007 Jun; 59(6):899-904. PubMed ID: 17637183
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Partial conversion of Hansenula polymorpha amine oxidase into a "plant" amine oxidase: implications for copper chemistry and mechanism.
    Welford RW; Lam A; Mirica LM; Klinman JP
    Biochemistry; 2007 Sep; 46(38):10817-27. PubMed ID: 17760423
    [TBL] [Abstract][Full Text] [Related]  

  • 52. S29434, a Quinone Reductase 2 Inhibitor: Main Biochemical and Cellular Characterization.
    Boutin JA; Bouillaud F; Janda E; Gacsalyi I; Guillaumet G; Hirsch EC; Kane DA; Nepveu F; Reybier K; Dupuis P; Bertrand M; Chhour M; Le Diguarher T; Antoine M; Brebner K; Da Costa H; Ducrot P; Giganti A; Goswami V; Guedouari H; Michel PP; Patel A; Paysant J; Stojko J; Viaud-Massuard MC; Ferry G
    Mol Pharmacol; 2019 Mar; 95(3):269-285. PubMed ID: 30567956
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Similar structure-activity relationships of quinoline derivatives for antiprion and antimalarial effects.
    Klingenstein R; Melnyk P; Leliveld SR; Ryckebusch A; Korth C
    J Med Chem; 2006 Aug; 49(17):5300-8. PubMed ID: 16913719
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Indolequinone inhibitors of NRH:quinone oxidoreductase 2. Characterization of the mechanism of inhibition in both cell-free and cellular systems.
    Yan C; Dufour M; Siegel D; Reigan P; Gomez J; Shieh B; Moody CJ; Ross D
    Biochemistry; 2011 Aug; 50(31):6678-88. PubMed ID: 21718050
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Xenobiotic reductase A in the degradation of quinoline by Pseudomonas putida 86: physiological function, structure and mechanism of 8-hydroxycoumarin reduction.
    Griese JJ; P Jakob R; Schwarzinger S; Dobbek H
    J Mol Biol; 2006 Aug; 361(1):140-52. PubMed ID: 16822524
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure-based de novo design, molecular docking and molecular dynamics of primaquine analogues acting as quinone reductase II inhibitors.
    Murce E; Cuya-Guizado TR; Padilla-Chavarria HI; França TCC; Pimentel AS
    J Mol Graph Model; 2015 Nov; 62():235-244. PubMed ID: 26521207
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural and functional insights into sulfide:quinone oxidoreductase.
    Brito JA; Sousa FL; Stelter M; Bandeiras TM; Vonrhein C; Teixeira M; Pereira MM; Archer M
    Biochemistry; 2009 Jun; 48(24):5613-22. PubMed ID: 19438211
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isolation, catalytic properties, and competitive inhibitors of the zinc-dependent murine glutaminyl cyclase.
    Schilling S; Cynis H; von Bohlen A; Hoffmann T; Wermann M; Heiser U; Buchholz M; Zunkel K; Demuth HU
    Biochemistry; 2005 Oct; 44(40):13415-24. PubMed ID: 16201766
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The succinate:menaquinone reductase of Bacillus cereus: characterization of the membrane-bound and purified enzyme.
    García LM; Contreras-Zentella ML; Jaramillo R; Benito-Mercadé MC; Mendoza-Hernández G; del Arenal IP; Membrillo-Hernández J; Escamilla JE
    Can J Microbiol; 2008 Jun; 54(6):456-66. PubMed ID: 18535631
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Primaquine synergises the activity of chloroquine against chloroquine-resistant P. falciparum.
    Bray PG; Deed S; Fox E; Kalkanidis M; Mungthin M; Deady LW; Tilley L
    Biochem Pharmacol; 2005 Oct; 70(8):1158-66. PubMed ID: 16139253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.