BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 15078134)

  • 41. Targeting PIM kinases impairs survival of hematopoietic cells transformed by kinase inhibitor-sensitive and kinase inhibitor-resistant forms of Fms-like tyrosine kinase 3 and BCR/ABL.
    Adam M; Pogacic V; Bendit M; Chappuis R; Nawijn MC; Duyster J; Fox CJ; Thompson CB; Cools J; Schwaller J
    Cancer Res; 2006 Apr; 66(7):3828-35. PubMed ID: 16585210
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [FLT3 kinase inhibitors for the treatment of acute leukemia].
    Kiyoi H
    Rinsho Ketsueki; 2010 Jun; 51(6):384-9. PubMed ID: 20622483
    [No Abstract]   [Full Text] [Related]  

  • 43. FLT3 inhibitors in acute myeloid leukemia: Current and future.
    Thomas CM; Campbell P
    J Oncol Pharm Pract; 2019 Jan; 25(1):163-171. PubMed ID: 30270754
    [TBL] [Abstract][Full Text] [Related]  

  • 44. FLT3 and KIT mutated pediatric acute myeloid leukemia (AML) samples are sensitive in vitro to the tyrosine kinase inhibitor SU11657.
    Goemans BF; Zwaan CM; Cloos J; de Lange D; Loonen AH; Reinhardt D; Hählen K; Gibson BE; Creutzig U; Kaspers GJ
    Leuk Res; 2010 Oct; 34(10):1302-7. PubMed ID: 20435347
    [TBL] [Abstract][Full Text] [Related]  

  • 45. FLT3 mutations: biology and treatment.
    Small D
    Hematology Am Soc Hematol Educ Program; 2006; ():178-84. PubMed ID: 17124058
    [TBL] [Abstract][Full Text] [Related]  

  • 46. FLT3-TKD mutation in childhood acute myeloid leukemia.
    Liang DC; Shih LY; Hung IJ; Yang CP; Chen SH; Jaing TH; Liu HC; Wang LY; Chang WH
    Leukemia; 2003 May; 17(5):883-6. PubMed ID: 12750701
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Normal and oncogenic FLT3.
    Naoe T; Kiyoi H
    Cell Mol Life Sci; 2004 Dec; 61(23):2932-8. PubMed ID: 15583855
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tricyclic quinoxalines as potent kinase inhibitors of PDGFR kinase, Flt3 and Kit.
    Gazit A; Yee K; Uecker A; Böhmer FD; Sjöblom T; Ostman A; Waltenberger J; Golomb G; Banai S; Heinrich MC; Levitzki A
    Bioorg Med Chem; 2003 May; 11(9):2007-18. PubMed ID: 12670652
    [TBL] [Abstract][Full Text] [Related]  

  • 49. FMS-like tyrosine kinase 3 in normal hematopoiesis and acute myeloid leukemia.
    Parcells BW; Ikeda AK; Simms-Waldrip T; Moore TB; Sakamoto KM
    Stem Cells; 2006 May; 24(5):1174-84. PubMed ID: 16410383
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biology, clinical relevance, and molecularly targeted therapy in acute leukemia with FLT3 mutation.
    Kiyoi H; Naoe T
    Int J Hematol; 2006 May; 83(4):301-8. PubMed ID: 16757428
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Clinical impact of internal tandem duplications and activating point mutations in FLT3 in acute myeloid leukemia in elderly patients.
    Andersson A; Johansson B; Lassen C; Mitelman F; Billström R; Fioretos T
    Eur J Haematol; 2004 May; 72(5):307-13. PubMed ID: 15059064
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Internal tandem duplication of fms-like tyrosine kinase 3 is associated with poor outcome in patients with myelodysplastic syndrome.
    Shih LY; Lin TL; Wang PN; Wu JH; Dunn P; Kuo MC; Huang CF
    Cancer; 2004 Sep; 101(5):989-98. PubMed ID: 15329908
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prognostic implications of the presence of FLT3 mutations in patients with acute myeloid leukemia.
    Kottaridis PD; Gale RE; Linch DC
    Leuk Lymphoma; 2003 Jun; 44(6):905-13. PubMed ID: 12854887
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Acquisition of FLT3 or N-ras mutations is frequently associated with progression of myelodysplastic syndrome to acute myeloid leukemia.
    Shih LY; Huang CF; Wang PN; Wu JH; Lin TL; Dunn P; Kuo MC
    Leukemia; 2004 Mar; 18(3):466-75. PubMed ID: 14737077
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Incidence and prognostic value of FLT3 internal tandem duplication and D835 mutations in acute myeloid leukemia.
    Moreno I; Martín G; Bolufer P; Barragán E; Rueda E; Román J; Fernández P; León P; Mena A; Cervera J; Torres A; Sanz MA
    Haematologica; 2003 Jan; 88(1):19-24. PubMed ID: 12551822
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Small molecules ATP-competitive inhibitors of FLT3: a chemical overview.
    Schenone S; Brullo C; Botta M
    Curr Med Chem; 2008; 15(29):3113-32. PubMed ID: 19075657
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pharmacogenomics suggests new treatment approach for leukaemia.
    Senior K
    Drug Discov Today; 2002 Aug; 7(15):791-2. PubMed ID: 12546960
    [No Abstract]   [Full Text] [Related]  

  • 58. Small molecule inhibitors of the class 1 receptor tyrosine kinase family.
    Cockerill GS; Lackey KE
    Curr Top Med Chem; 2002 Sep; 2(9):1001-10. PubMed ID: 12171567
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Receptor tyrosine kinases in normal and malignant haematopoiesis.
    Reilly JT
    Blood Rev; 2003 Dec; 17(4):241-8. PubMed ID: 14556779
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The latest perspectives of small molecules FMS kinase inhibitors.
    Alkubaisi BO; Aljobowry R; Ali SM; Sultan S; Zaraei SO; Ravi A; Al-Tel TH; El-Gamal MI
    Eur J Med Chem; 2023 Dec; 261():115796. PubMed ID: 37708796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.