BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 15078146)

  • 1. Protein phosphatase inhibition: structure based design. Towards new therapeutic agents.
    Sakoff JA; McCluskey A
    Curr Pharm Des; 2004; 10(10):1139-59. PubMed ID: 15078146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Okadaic acid: the archetypal serine/threonine protein phosphatase inhibitor.
    Dounay AB; Forsyth CJ
    Curr Med Chem; 2002 Nov; 9(22):1939-80. PubMed ID: 12369865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The inhibition of protein phosphatases 1 and 2A: a new target for rational anti-cancer drug design?
    McCluskey A; Ackland SP; Gardiner E; Walkom CC; Sakoff JA
    Anticancer Drug Des; 2001 Dec; 16(6):291-303. PubMed ID: 12375882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serine-threonine protein phosphatase inhibitors: development of potential therapeutic strategies.
    McCluskey A; Sim AT; Sakoff JA
    J Med Chem; 2002 Mar; 45(6):1151-75. PubMed ID: 11881984
    [No Abstract]   [Full Text] [Related]  

  • 5. Small molecule inhibitors of serine/threonine protein phosphatases.
    McCluskey A; Sakoff JA
    Mini Rev Med Chem; 2001 May; 1(1):43-55. PubMed ID: 12369990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 19-epi-okadaic acid, a novel protein phosphatase inhibitor with enhanced selectivity.
    Cruz PG; Daranas AH; Fernández JJ; Norte M
    Org Lett; 2007 Aug; 9(16):3045-8. PubMed ID: 17630753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and biological evaluation of cytostatin analogues.
    Bialy L; Waldmann H
    Chem Commun (Camb); 2003 Aug; (15):1872-3. PubMed ID: 12932009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viewing serine/threonine protein phosphatases through the eyes of drug designers.
    Zhang M; Yogesha SD; Mayfield JE; Gill GN; Zhang Y
    FEBS J; 2013 Oct; 280(19):4739-60. PubMed ID: 23937612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for Targeting Serine/Threonine Protein Phosphatases with Small Molecules in Cancer.
    Zhang Q; Fan Z; Zhang L; You Q; Wang L
    J Med Chem; 2021 Jul; 64(13):8916-8938. PubMed ID: 34156850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based drug design of new leads for phosphatase research.
    Combs AP
    IDrugs; 2007 Feb; 10(2):112-5. PubMed ID: 17285463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pharmacophore model of tautomycin, an inhibitor of protein phosphatases 1 and 2A.
    Ubukata M; Koshino H; Yamasaki C; Fujita K; Isono K
    J Antibiot (Tokyo); 1997 Oct; 50(10):801-7. PubMed ID: 9402983
    [No Abstract]   [Full Text] [Related]  

  • 12. Pharmacophore identification: the case of the ser/thr protein phosphatase inhibitors.
    Colby DA; Chamberlin AR
    Mini Rev Med Chem; 2006 Jun; 6(6):657-65. PubMed ID: 16787376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A targeted library of small-molecule, tyrosine, and dual-specificity phosphatase inhibitors derived from a rational core design and random side chain variation.
    Rice RL; Rusnak JM; Yokokawa F; Yokokawa S; Messner DJ; Boynton AL; Wipf P; Lazo JS
    Biochemistry; 1997 Dec; 36(50):15965-74. PubMed ID: 9398331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of p42 mitogen-activated-protein kinase activity by protein phosphatase 2A under conditions of growth inhibition by epidermal growth factor in A431 cells.
    Chajry N; Martin PM; Cochet C; Berthois Y
    Eur J Biochem; 1996 Jan; 235(1-2):97-102. PubMed ID: 8631373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of protein phosphatases-1 and -2A with acanthifolicin. Comparison with diarrhetic shellfish toxins and identification of a region on okadaic acid important for phosphatase inhibition.
    Holmes CF; Luu HA; Carrier F; Schmitz FJ
    FEBS Lett; 1990 Sep; 270(1-2):216-8. PubMed ID: 2171991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitors of serine/threonine phosphoprotein phosphatases alter circadian properties in Gonyaulax polyedra.
    Comolli J; Taylor W; Rehman J; Hastings JW
    Plant Physiol; 1996 May; 111(1):285-91. PubMed ID: 8685268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spirastrellolide A: revised structure, progress toward the relative configuration, and inhibition of protein phosphatase 2A.
    Williams DE; Lapawa M; Feng X; Tarling T; Roberge M; Andersen RJ
    Org Lett; 2004 Jul; 6(15):2607-10. PubMed ID: 15255702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of tumor necrosis factor-alpha on insulin-stimulated mitogen-activated protein kinase cascade in cultured rat skeletal muscle cells.
    Begum N; Ragolia L; Srinivasan M
    Eur J Biochem; 1996 May; 238(1):214-20. PubMed ID: 8665940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model for binding of structurally diverse natural product inhibitors of protein phosphatases PP1 and PP2A.
    Gupta V; Ogawa AK; Du X; Houk KN; Armstrong RW
    J Med Chem; 1997 Sep; 40(20):3199-206. PubMed ID: 9379439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of okadaic acid as a pathway to the cell.
    Daranas AH; Cruz PG; Creus AH; Norte M; Fernández JJ
    Org Lett; 2007 Oct; 9(21):4191-4. PubMed ID: 17867692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.