BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 15078150)

  • 1. Counting and behavior of an individual fluorescent molecule without hydrodynamic flow, immobilization, or photon count statistics.
    Földes-Papp Z; Baumann G; Demel U; Tilz GP
    Curr Pharm Biotechnol; 2004 Apr; 5(2):163-72. PubMed ID: 15078150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new concept for ultrasensitive fluorescence measurements of molecules in solution and membrane: 1. Theory and a first application.
    Földes-Papp Z; Demel U; Tilz GP
    J Immunol Methods; 2004 Mar; 286(1-2):1-11. PubMed ID: 15087217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 'True' single-molecule molecule observations by fluorescence correlation spectroscopy and two-color fluorescence cross-correlation spectroscopy.
    Földes-Papp Z
    Exp Mol Pathol; 2007 Apr; 82(2):147-55. PubMed ID: 17258199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How the molecule number is correctly quantified in two-color fluorescence cross-correlation spectroscopy: corrections for cross-talk and quenching in experiments.
    Földes-Papp Z
    Curr Pharm Biotechnol; 2005 Dec; 6(6):437-44. PubMed ID: 16375728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid analysis of Forster resonance energy transfer by two-color global fluorescence correlation spectroscopy: trypsin proteinase reaction.
    Eggeling C; Kask P; Winkler D; Jäger S
    Biophys J; 2005 Jul; 89(1):605-18. PubMed ID: 15849243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the sensitivity of fluorescence correlation spectroscopy by using time-correlated single photon counting.
    Lamb DC; Müller BK; Bräuchle C
    Curr Pharm Biotechnol; 2005 Oct; 6(5):405-14. PubMed ID: 16248814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Meaningful interpretation of subdiffusive measurements in living cells (crowded environment) by fluorescence fluctuation microscopy.
    Baumann G; Place RF; Földes-Papp Z
    Curr Pharm Biotechnol; 2010 Aug; 11(5):527-43. PubMed ID: 20553227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new dimension for the development of fluorescence-based assays in solution: from physical principles of FCS detection to biological applications.
    Földes-Papp Z; Demel U; Domej W; Tilz GP
    Exp Biol Med (Maywood); 2002 May; 227(5):291-300. PubMed ID: 11976399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements.
    Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA
    J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new concept for ultrasensitive fluorescence measurements of molecules in solution and membrane: 2. The individual immune molecule.
    Földes-Papp Z; Demel U; Tilz GP
    J Immunol Methods; 2004 Mar; 286(1-2):13-20. PubMed ID: 15087218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of rhodopsin dimerization in situ by PIE-FCCS, a time-resolved fluorescence spectroscopy.
    Smith AW
    Methods Mol Biol; 2015; 1271():205-19. PubMed ID: 25697526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence fluctuation spectroscopic approaches to the study of a single molecule diffusing in solution and a live cell without systemic drift or convection: a theoretical study.
    Földes-Papp Z
    Curr Pharm Biotechnol; 2007 Oct; 8(5):261-73. PubMed ID: 17979724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation and application of pulsed interleaved excitation for dual-color FCS and RICS.
    Hendrix J; Lamb DC
    Methods Mol Biol; 2014; 1076():653-82. PubMed ID: 24108649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What it means to measure a single molecule in a solution by fluorescence fluctuation spectroscopy.
    Földes-Papp Z
    Exp Mol Pathol; 2006 Jun; 80(3):209-18. PubMed ID: 16515783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inter-molecular interaction kinetics: tale of photon anti-bunching and bunching in fluorescence correlation spectroscopy (FCS).
    Sarkar A; Kumbhakar M
    Methods Appl Fluoresc; 2022 Jul; 10(4):. PubMed ID: 35817064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scanning fluorescence correlation spectroscopy: a tool for probing microsecond dynamics of surface-bound fluorescent species.
    Xiao Y; Buschmann V; Weston KD
    Anal Chem; 2005 Jan; 77(1):36-46. PubMed ID: 15623276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of single molecules: solution-phase single-molecule fluorescence correlation spectroscopy as an ultrasensitive, rapid and reliable system for immunological investigation.
    Földes-Papp Z; Demel U; Tilz GP
    J Immunol Methods; 2002 Feb; 260(1-2):117-24. PubMed ID: 11792382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The photon counting histogram in fluorescence fluctuation spectroscopy.
    Chen Y; Müller JD; So PT; Gratton E
    Biophys J; 1999 Jul; 77(1):553-67. PubMed ID: 10388780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA measurements by using fluorescence correlation spectroscopy and two-color fluorescence cross correlation spectroscopy.
    Takagi T; Kii H; Kinjo M
    Curr Pharm Biotechnol; 2004 Apr; 5(2):199-204. PubMed ID: 15078154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data registration and selective single-molecule analysis using multi-parameter fluorescence detection.
    Eggeling C; Berger S; Brand L; Fries JR; Schaffer J; Volkmer A; Seidel CA
    J Biotechnol; 2001 Apr; 86(3):163-80. PubMed ID: 11257530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.