These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 15079054)

  • 21. Curved tails in polymerization-based bacterial motility.
    Rutenberg AD; Grant M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021904. PubMed ID: 11497617
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Force generation by actin polymerization II: the elastic ratchet and tethered filaments.
    Mogilner A; Oster G
    Biophys J; 2003 Mar; 84(3):1591-605. PubMed ID: 12609863
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mesoscopic model of actin-based propulsion.
    Zhu J; Mogilner A
    PLoS Comput Biol; 2012; 8(11):e1002764. PubMed ID: 23133366
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic properties of the ATP-dependent actin-myosin sliding as revealed by the force-movement assay system with a centrifuge microscope.
    Chaen S; Oiwa K; Kobayashi T; Gross T; Kamitsubo E; Shimmen T; Sugi H
    Adv Exp Med Biol; 1993; 332():351-9; discussion 360. PubMed ID: 8109350
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Force on single actin filaments in a motility assay measured with an optical trap.
    Simmons RM; Finer JT; Warrick HM; Kralik B; Chu S; Spudich JA
    Adv Exp Med Biol; 1993; 332():331-6; discussion 336-7. PubMed ID: 8109348
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In silico reconstitution of Listeria propulsion exhibits nano-saltation.
    Alberts JB; Odell GM
    PLoS Biol; 2004 Dec; 2(12):e412. PubMed ID: 15562315
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Steady-state force-velocity relation in the ATP-dependent sliding movement of myosin-coated beads on actin cables in vitro studied with a centrifuge microscope.
    Oiwa K; Chaen S; Kamitsubo E; Shimmen T; Sugi H
    Proc Natl Acad Sci U S A; 1990 Oct; 87(20):7893-7. PubMed ID: 2236007
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pushing with actin: from cells to pathogens.
    Small JV
    Biochem Soc Trans; 2015 Feb; 43(1):84-91. PubMed ID: 25619250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism of actin-based motility.
    Pantaloni D; Le Clainche C; Carlier MF
    Science; 2001 May; 292(5521):1502-6. PubMed ID: 11379633
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Elasticity of podosome actin networks produces nanonewton protrusive forces.
    Jasnin M; Hervy J; Balor S; Bouissou A; Proag A; Voituriez R; Schneider J; Mangeat T; Maridonneau-Parini I; Baumeister W; Dmitrieff S; Poincloux R
    Nat Commun; 2022 Jul; 13(1):3842. PubMed ID: 35789161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel form of growth cone motility involving site-directed actin filament assembly.
    Forscher P; Lin CH; Thompson C
    Nature; 1992 Jun; 357(6378):515-8. PubMed ID: 1608453
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polymer motors: pushing out the front and pulling up the back.
    Mogilner A; Oster G
    Curr Biol; 2003 Sep; 13(18):R721-33. PubMed ID: 13678614
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reconstitution of Actin-Based Motility with Commercially Available Proteins.
    Sykes C; Plastino J
    J Vis Exp; 2022 Oct; (188):. PubMed ID: 36373911
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acting on actin: the electric motility assay.
    Riveline D; Ott A; Jülicher F; Winkelmann DA; Cardoso O; Lacapère JJ; Magnúsdóttir S; Viovy JL; Gorre-Talini L; Prost J
    Eur Biophys J; 1998; 27(4):403-8. PubMed ID: 9691469
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Myosin-I Synergizes with Arp2/3 Complex to Enhance Pushing Forces of Branched Actin Networks.
    Xu M; Rutkowski DM; Rebowski G; Boczkowska M; Pollard LW; Dominguez R; Vavylonis D; Ostap EM
    bioRxiv; 2024 Feb; ():. PubMed ID: 38405741
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In silico reconstitution of actin-based symmetry breaking and motility.
    Dayel MJ; Akin O; Landeryou M; Risca V; Mogilner A; Mullins RD
    PLoS Biol; 2009 Sep; 7(9):e1000201. PubMed ID: 19771152
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deformations in actin comets from rocketing beads.
    Paluch E; van der Gucht J; Joanny JF; Sykes C
    Biophys J; 2006 Oct; 91(8):3113-22. PubMed ID: 16877512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of proteins of the Ena/VASP family in actin-based motility of Listeria monocytogenes.
    Laurent V; Loisel TP; Harbeck B; Wehman A; Gröbe L; Jockusch BM; Wehland J; Gertler FB; Carlier MF
    J Cell Biol; 1999 Mar; 144(6):1245-58. PubMed ID: 10087267
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Curvature and torsion in growing actin networks.
    Shaevitz JW; Fletcher DA
    Phys Biol; 2008 Jun; 5(2):026006. PubMed ID: 18560043
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of actin dynamics in rapidly moving cells: a quantitative analysis.
    Mogilner A; Edelstein-Keshet L
    Biophys J; 2002 Sep; 83(3):1237-58. PubMed ID: 12202352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.