These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 15079893)
1. Antifouling potential of lubricious, micro-engineered, PDMS elastomers against zoospores of the green fouling alga Ulva (Enteromorpha). Hoipkemeier-Wilson L; Schumacher JF; Carman ML; Gibson AL; Feinberg AW; Callow ME; Finlay JA; Callow JA; Brennan AB Biofouling; 2004 Feb; 20(1):53-63. PubMed ID: 15079893 [TBL] [Abstract][Full Text] [Related]
2. The influence of elastic modulus and thickness on the release of the soft-fouling green alga Ulva linza (syn. Enteromorpha linza) from poly(dimethylsiloxane) (PDMS) model networks. Chaudhury MK; Finlay JA; Chung JY; Callow ME; Callow JA Biofouling; 2005; 21(1):41-8. PubMed ID: 16019390 [TBL] [Abstract][Full Text] [Related]
3. Engineered antifouling microtopographies - effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva. Schumacher JF; Carman ML; Estes TG; Feinberg AW; Wilson LH; Callow ME; Callow JA; Finlay JA; Brennan AB Biofouling; 2007; 23(1-2):55-62. PubMed ID: 17453729 [TBL] [Abstract][Full Text] [Related]
4. Species-specific engineered antifouling topographies: correlations between the settlement of algal zoospores and barnacle cyprids. Schumacher JF; Aldred N; Callow ME; Finlay JA; Callow JA; Clare AS; Brennan AB Biofouling; 2007; 23(5-6):307-17. PubMed ID: 17852066 [TBL] [Abstract][Full Text] [Related]
5. Roughness-dependent removal of settled spores of the green alga Ulva (syn. Enteromorpha) exposed to hydrodynamic forces from a water jet. Granhag LM; Finlay JA; Jonsson PR; Callow JA; Callow ME Biofouling; 2004 Apr; 20(2):117-22. PubMed ID: 15203965 [TBL] [Abstract][Full Text] [Related]
6. Engineered antifouling microtopographies: kinetic analysis of the attachment of zoospores of the green alga Ulva to silicone elastomers. Cooper SP; Finlay JA; Cone G; Callow ME; Callow JA; Brennan AB Biofouling; 2011 Sep; 27(8):881-91. PubMed ID: 21882899 [TBL] [Abstract][Full Text] [Related]
7. A model that predicts the attachment behavior of Ulva linza zoospores on surface topography. Long CJ; Schumacher JF; Robinson PA; Finlay JA; Callow ME; Callow JA; Brennan AB Biofouling; 2010 May; 26(4):411-9. PubMed ID: 20191401 [TBL] [Abstract][Full Text] [Related]
8. Anomalous settlement behavior of Ulva linza zoospores on cationic oligopeptide surfaces. Ederth T; Nygren P; Pettitt ME; Ostblom M; Du C-; Broo K; Callow ME; Callow J; Liedberg B Biofouling; 2008; 24(4):303-12. PubMed ID: 18589494 [TBL] [Abstract][Full Text] [Related]
9. Engineered nanoforce gradients for inhibition of settlement (attachment) of swimming algal spores. Schumacher JF; Long CJ; Callow ME; Finlay JA; Callow JA; Brennan AB Langmuir; 2008 May; 24(9):4931-7. PubMed ID: 18361532 [TBL] [Abstract][Full Text] [Related]
10. The effects of nitric oxide in settlement and adhesion of zoospores of the green alga Ulva. Thompson SE; Callow ME; Callow JA Biofouling; 2010; 26(2):167-78. PubMed ID: 19927239 [TBL] [Abstract][Full Text] [Related]
11. Engineered antifouling microtopographies: the role of Reynolds number in a model that predicts attachment of zoospores of Ulva and cells of Cobetia marina. Magin CM; Long CJ; Cooper SP; Ista LK; López GP; Brennan AB Biofouling; 2010 Aug; 26(6):719-27. PubMed ID: 20706891 [TBL] [Abstract][Full Text] [Related]
12. Antifouling performance of cross-linked hydrogels: refinement of an attachment model. Magin CM; Finlay JA; Clay G; Callow ME; Callow JA; Brennan AB Biomacromolecules; 2011 Apr; 12(4):915-22. PubMed ID: 21401017 [TBL] [Abstract][Full Text] [Related]
13. Engineered antifouling microtopographies: mapping preferential and inhibitory microenvironments for zoospore attachment. Long CJ; Finlay JA; Callow ME; Callow JA; Brennan AB Biofouling; 2010 Nov; 26(8):941-52. PubMed ID: 21038153 [TBL] [Abstract][Full Text] [Related]
14. Settlement of Ulva zoospores on patterned fluorinated and PEGylated monolayer surfaces. Finlay JA; Krishnan S; Callow ME; Callow JA; Dong R; Asgill N; Wong K; Kramer EJ; Ober CK Langmuir; 2008 Jan; 24(2):503-10. PubMed ID: 18081330 [TBL] [Abstract][Full Text] [Related]
15. Settlement behavior of zoospores of Ulva linza during surface selection studied by digital holographic microscopy. Heydt M; Pettitt ME; Cao X; Callow ME; Callow JA; Grunze M; Rosenhahn A Biointerphases; 2012 Dec; 7(1-4):33. PubMed ID: 22589076 [TBL] [Abstract][Full Text] [Related]
16. Hot embossed microtopographic gradients reveal morphological cues that guide the settlement of zoospores. Xiao L; Thompson SE; Röhrig M; Callow ME; Callow JA; Grunze M; Rosenhahn A Langmuir; 2013 Jan; 29(4):1093-9. PubMed ID: 23273183 [TBL] [Abstract][Full Text] [Related]
17. Conditioning of surfaces by macromolecules and its implication for the settlement of zoospores of the green alga Ulva linza. Thome I; Pettitt ME; Callow ME; Callow JA; Grunze M; Rosenhahn A Biofouling; 2012; 28(5):501-10. PubMed ID: 22594397 [TBL] [Abstract][Full Text] [Related]
18. Hybrid xerogel films as novel coatings for antifouling and fouling release. Tang Y; Finlay JA; Kowalke GL; Meyer AE; Bright FV; Callow ME; Callow JA; Wendt DE; Detty MR Biofouling; 2005; 21(1):59-71. PubMed ID: 16019392 [TBL] [Abstract][Full Text] [Related]
20. Holographic microscopy provides new insights into the settlement of zoospores of the green alga Ulva linza on cationic oligopeptide surfaces. Vater SM; Finlay J; Callow ME; Callow JA; Ederth T; Liedberg B; Grunze M; Rosenhahn A Biofouling; 2015; 31(2):229-39. PubMed ID: 25875964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]