These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 1508037)
1. DNA twist as a transcriptional sensor for environmental changes. Wang JY; Syvanen M Mol Microbiol; 1992 Jul; 6(14):1861-6. PubMed ID: 1508037 [TBL] [Abstract][Full Text] [Related]
2. DNA twist, flexibility and transcription of the osmoregulated proU promoter of Salmonella typhimurium. Jordi BJ; Owen-Hughes TA; Hulton CS; Higgins CF EMBO J; 1995 Nov; 14(22):5690-700. PubMed ID: 8521826 [TBL] [Abstract][Full Text] [Related]
3. Twist, writhe, and geometry of a DNA loop containing equally spaced coplanar bends. White JH; Lund RA; Bauer WR Biopolymers; 1996 Feb; 38(2):235-50. PubMed ID: 8589256 [TBL] [Abstract][Full Text] [Related]
4. Calculation of the twist and the writhe for representative models of DNA. White JH; Bauer WR J Mol Biol; 1986 May; 189(2):329-41. PubMed ID: 3746909 [TBL] [Abstract][Full Text] [Related]
5. Energetics of DNA twisting. II. Topoisomer analysis. Shore D; Baldwin RL J Mol Biol; 1983 Nov; 170(4):983-1007. PubMed ID: 6644817 [TBL] [Abstract][Full Text] [Related]
6. The effect of the DNA conformation on the rate of NtrC activated transcription of Escherichia coli RNA polymerase.sigma(54) holoenzyme. Schulz A; Langowski J; Rippe K J Mol Biol; 2000 Jul; 300(4):709-25. PubMed ID: 10891265 [TBL] [Abstract][Full Text] [Related]
7. Twist and writhe of a DNA loop containing intrinsic bends. Bauer WR; Lund RA; White JH Proc Natl Acad Sci U S A; 1993 Feb; 90(3):833-7. PubMed ID: 8430093 [TBL] [Abstract][Full Text] [Related]
8. Environmental influences on DNA superhelicity. The effect of ionic strength on superhelix conformation in solution. Brady GW; Satkowski M; Foos D; Benham CJ J Mol Biol; 1987 May; 195(1):185-91. PubMed ID: 3656409 [TBL] [Abstract][Full Text] [Related]
12. Effect of varying the supercoiling of DNA on transcription and its regulation. Lim HM; Lewis DE; Lee HJ; Liu M; Adhya S Biochemistry; 2003 Sep; 42(36):10718-25. PubMed ID: 12962496 [TBL] [Abstract][Full Text] [Related]
13. The influence of DNA topology on the environmental regulation of a pH-regulated locus in Salmonella typhimurium. Karem K; Foster JW Mol Microbiol; 1993 Oct; 10(1):75-86. PubMed ID: 7968521 [TBL] [Abstract][Full Text] [Related]
14. Organization of supercoil domains and their reorganization by transcription. Deng S; Stein RA; Higgins NP Mol Microbiol; 2005 Sep; 57(6):1511-21. PubMed ID: 16135220 [TBL] [Abstract][Full Text] [Related]
15. Differential influence of DNA supercoiling on in vivo strength of promoters varying in structure and organisation in E. coli. Jyothirmai G; Mishra RK FEBS Lett; 1994 Mar; 340(3):189-92. PubMed ID: 8131843 [TBL] [Abstract][Full Text] [Related]
16. An E. coli promoter that regulates transcription by DNA superhelix-induced cruciform extrusion. Horwitz MS; Loeb LA Science; 1988 Aug; 241(4866):703-5. PubMed ID: 2456617 [TBL] [Abstract][Full Text] [Related]
17. Local DNA topology and gene expression: the case of the leu-500 promoter. Lilley DM; Higgins CF Mol Microbiol; 1991 Apr; 5(4):779-83. PubMed ID: 1857204 [TBL] [Abstract][Full Text] [Related]
18. A common topology for bacterial and eukaryotic transcription initiation? Travers A; Muskhelishvili G EMBO Rep; 2007 Feb; 8(2):147-51. PubMed ID: 17268506 [TBL] [Abstract][Full Text] [Related]
19. Promoters for Chlamydia type III secretion genes show a differential response to DNA supercoiling that correlates with temporal expression pattern. Case ED; Peterson EM; Tan M J Bacteriol; 2010 May; 192(10):2569-74. PubMed ID: 20233926 [TBL] [Abstract][Full Text] [Related]
20. Adjacent upstream superhelical writhe influences an Escherichia coli promoter as measured by in vivo strength and in vitro open complex formation. Hirota Y; Ohyama T J Mol Biol; 1995 Dec; 254(4):566-78. PubMed ID: 7500334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]