These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 15080696)

  • 41. Theoretical analysis of residual dipolar coupling patterns in regular secondary structures of proteins.
    Mascioni A; Veglia G
    J Am Chem Soc; 2003 Oct; 125(41):12520-6. PubMed ID: 14531696
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Side chain orientation from methyl 1H-1H residual dipolar couplings measured in highly deuterated proteins.
    Sibille N; Bersch B; Covès J; Blackledge M; Brutscher B
    J Am Chem Soc; 2002 Dec; 124(49):14616-25. PubMed ID: 12465972
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Residual dipolar couplings in protein structure determination.
    de Alba E; Tjandra N
    Methods Mol Biol; 2004; 278():89-106. PubMed ID: 15317993
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-resolution field-cycling NMR studies of a DNA octamer as a probe of phosphodiester dynamics and comparison with computer simulation.
    Roberts MF; Cui Q; Turner CJ; Case DA; Redfield AG
    Biochemistry; 2004 Mar; 43(12):3637-50. PubMed ID: 15035634
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Self-consistency analysis of dipolar couplings in multiple alignments of ubiquitin.
    Hus JC; Peti W; Griesinger C; Brüschweiler R
    J Am Chem Soc; 2003 May; 125(19):5596-7. PubMed ID: 12733874
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous NMR study of protein structure and dynamics using conservative mutagenesis.
    Yao L; Vögeli B; Torchia DA; Bax A
    J Phys Chem B; 2008 May; 112(19):6045-56. PubMed ID: 18358021
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A thorough dynamic interpretation of residual dipolar couplings in ubiquitin.
    Lakomek NA; Carlomagno T; Becker S; Griesinger C; Meiler J
    J Biomol NMR; 2006 Feb; 34(2):101-15. PubMed ID: 16518697
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Solid-state NMR approaches to internal dynamics of proteins: from picoseconds to microseconds and seconds.
    Krushelnitsky A; Reichert D; Saalwächter K
    Acc Chem Res; 2013 Sep; 46(9):2028-36. PubMed ID: 23875699
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Weak alignment offers new NMR opportunities to study protein structure and dynamics.
    Bax A
    Protein Sci; 2003 Jan; 12(1):1-16. PubMed ID: 12493823
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Periodicity, planarity, and pixel (3P): a program using the intrinsic residual dipolar coupling periodicity-to-peptide plane correlation and phi/psi angles to derive protein backbone structures.
    Wang J; Walsh JD; Kuszewski J; Wang YX
    J Magn Reson; 2007 Nov; 189(1):90-103. PubMed ID: 17892961
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of uncertainty in alignment tensors obtained from dipolar couplings.
    Zweckstetter M; Bax A
    J Biomol NMR; 2002 Jun; 23(2):127-37. PubMed ID: 12153038
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Residue-specific 13C' CSA tensor principal components for ubiquitin: correlation between tensor components and hydrogen bonding.
    Burton RA; Tjandra N
    J Am Chem Soc; 2007 Feb; 129(5):1321-6. PubMed ID: 17263416
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Direct structure determination using residual dipolar couplings: reaction-site conformation of methionine sulfoxide reductase in solution.
    Béraud S; Bersch B; Brutscher B; Gans P; Barras F; Blackledge M
    J Am Chem Soc; 2002 Nov; 124(46):13709-15. PubMed ID: 12431100
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification of slow correlated motions in proteins using residual dipolar and hydrogen-bond scalar couplings.
    Bouvignies G; Bernadó P; Meier S; Cho K; Grzesiek S; Brüschweiler R; Blackledge M
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13885-90. PubMed ID: 16172390
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Model-free approach to the dynamic interpretation of residual dipolar couplings in globular proteins.
    Meiler J; Prompers JJ; Peti W; Griesinger C; Brüschweiler R
    J Am Chem Soc; 2001 Jun; 123(25):6098-107. PubMed ID: 11414844
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Backbone assignment of proteins with known structure using residual dipolar couplings.
    Jung YS; Zweckstetter M
    J Biomol NMR; 2004 Sep; 30(1):25-35. PubMed ID: 15452432
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Concordance of residual dipolar couplings, backbone order parameters and crystallographic B-factors for a small alpha/beta protein: a unified picture of high probability, fast atomic motions in proteins.
    Clore GM; Schwieters CD
    J Mol Biol; 2006 Feb; 355(5):879-86. PubMed ID: 16343537
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The dynamics of lysozyme from bacteriophage lambda in solution probed by NMR and MD simulations.
    Smith LJ; Bowen AM; Di Paolo A; Matagne A; Redfield C
    Chembiochem; 2013 Sep; 14(14):1780-8. PubMed ID: 23801644
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 15N-1H Residual dipolar coupling analysis of native and alkaline-K79A Saccharomyces cerevisiae cytochrome c.
    Assfalg M; Bertini I; Turano P; Mauk AG; Winkler JR; Gray HB
    Biophys J; 2003 Jun; 84(6):3917-23. PubMed ID: 12770897
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simultaneous definition of high resolution protein structure and backbone conformational dynamics using NMR residual dipolar couplings.
    Bouvignies G; Markwick PR; Blackledge M
    Chemphyschem; 2007 Sep; 8(13):1901-9. PubMed ID: 17654630
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.