These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 15080736)

  • 1. Reconstitution of nicotinic acetylcholine receptors into gel-protected lipid membranes.
    Beddow JA; Peterson IR; Heptinstall J; Walton DJ
    Anal Chem; 2004 Apr; 76(8):2261-5. PubMed ID: 15080736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supported membranes with well-defined polymer tethers--incorporation of cell receptors.
    Purrucker O; Förtig A; Jordan R; Tanaka M
    Chemphyschem; 2004 Mar; 5(3):327-35. PubMed ID: 15067869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of reconstituted acetylcholine receptor membranes suitable for AFM imaging of lipid-protein interactions.
    Vuong N; Baenziger JE; Johnston LJ
    Chem Phys Lipids; 2010 Feb; 163(2):117-26. PubMed ID: 19800876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The lipid environment of the nicotinic acetylcholine receptor in native and reconstituted membranes.
    Barrantes FJ
    Crit Rev Biochem Mol Biol; 1989; 24(5):437-78. PubMed ID: 2676352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid composition alters drug action at the nicotinic acetylcholine receptor.
    Baenziger JE; Ryan SE; Goodreid MM; Vuong NQ; Sturgeon RM; daCosta CJ
    Mol Pharmacol; 2008 Mar; 73(3):880-90. PubMed ID: 18055762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogel-encapsulated lipid membranes.
    Jeon TJ; Malmstadt N; Schmidt JJ
    J Am Chem Soc; 2006 Jan; 128(1):42-3. PubMed ID: 16390112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamate receptor incorporated in a mixed hybrid bilayer lipid membrane array, as a sensing element of a biosensor working under flowing conditions.
    Favero G; Campanella L; Cavallo S; D'Annibale A; Perrella M; Mattei E; Ferri T
    J Am Chem Soc; 2005 Jun; 127(22):8103-11. PubMed ID: 15926837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid conformation in crystalline bilayers and in crystals of transmembrane proteins.
    Marsh D; Páli T
    Chem Phys Lipids; 2006 Jun; 141(1-2):48-65. PubMed ID: 16603141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid-protein interactions at the nicotinic acetylcholine receptor. A functional coupling between nicotinic receptors and phosphatidic acid-containing lipid bilayers.
    daCosta CJ; Ogrel AA; McCardy EA; Blanton MP; Baenziger JE
    J Biol Chem; 2002 Jan; 277(1):201-8. PubMed ID: 11682482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and dynamic studies of the gamma-M4 trans-membrane domain of the nicotinic acetylcholine receptor.
    Williamson PT; Zandomeneghi G; Barrantes FJ; Watts A; Meier BH
    Mol Membr Biol; 2005; 22(6):485-96. PubMed ID: 16373320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of hydrogen bonding on the rotational and translational dynamics of a headgroup-bound chromophore in bilayer lipid membranes.
    Greiner AJ; Pillman HA; Worden RM; Blanchard GJ; Ofoli RY
    J Phys Chem B; 2009 Oct; 113(40):13263-8. PubMed ID: 19761197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effect of lantibiotic warnerin on lipid bilayer membranes].
    Borisova MP; Korobov VP; Lemkina LM; Pan'kova NV; Likhatskaia GN
    Biofizika; 2009; 54(3):454-8. PubMed ID: 19569505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholesterol reduces membrane electroporation and electric deformation of small bilayer vesicles.
    Kakorin S; Brinkmann U; Neumann E
    Biophys Chem; 2005 Sep; 117(2):155-71. PubMed ID: 15923075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of the acetylcholine receptor dimer from Torpedo californica in a peptide supported lipid membrane investigated by surface plasmon and fluorescence spectroscopy.
    Schmidt EK; Liebermann T; Kreiter M; Jonczyk A; Naumann R; Offenhäusser A; Neumann E; Kukol A; Maelicke A; Knoll W
    Biosens Bioelectron; 1998 Sep; 13(6):585-91. PubMed ID: 9828354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly-l-lysines and poly-l-arginines induce leakage of negatively charged phospholipid vesicles and translocate through the lipid bilayer upon electrostatic binding to the membrane.
    Reuter M; Schwieger C; Meister A; Karlsson G; Blume A
    Biophys Chem; 2009 Sep; 144(1-2):27-37. PubMed ID: 19560854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An ionic polymer bead-supported lipid system.
    Haratake M; Hidaka S; Ono M; Nakayama M
    J Colloid Interface Sci; 2006 Jul; 299(2):924-7. PubMed ID: 16631782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between the structure of amphiphilic copolymers and their ability to disturb lipid bilayers.
    Demina T; Grozdova I; Krylova O; Zhirnov A; Istratov V; Frey H; Kautz H; Melik-Nubarov N
    Biochemistry; 2005 Mar; 44(10):4042-54. PubMed ID: 15751981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface response methodology for the study of supported membrane formation.
    Rossi C; Briand E; Parot P; Odorico M; Chopineau J
    J Phys Chem B; 2007 Jul; 111(26):7567-76. PubMed ID: 17567062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel method for artificial lipid-bilayer formation.
    Ide T; Ichikawa T
    Biosens Bioelectron; 2005 Oct; 21(4):672-7. PubMed ID: 16202882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solubilization of supported lipid membranes by octyl glucoside observed by time-lapse atomic force microscopy.
    Morandat S; El Kirat K
    Colloids Surf B Biointerfaces; 2007 Apr; 55(2):179-84. PubMed ID: 17207975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.