These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 15080736)
41. Amyloid-beta peptide disruption of lipid membranes and the effect of metal ions. Lau TL; Ambroggio EE; Tew DJ; Cappai R; Masters CL; Fidelio GD; Barnham KJ; Separovic F J Mol Biol; 2006 Feb; 356(3):759-70. PubMed ID: 16403524 [TBL] [Abstract][Full Text] [Related]
42. Incorporation of brain membrane proteins into planar bilayer lipid membranes. Repke H; Bérczi A; Matthies H Acta Biol Med Ger; 1980; 39(6):657-63. PubMed ID: 7456928 [TBL] [Abstract][Full Text] [Related]
43. [Protein spectra and lipid bilayers of erythrocyte membranes in children with insulin-dependent diabetes mellitus (data from polyacrylamide gel electrophoresis and fluorescent analysis)]. Kolosova MV; Novitskiĭ VV; Stepovaia EA; Kravets EB Biull Eksp Biol Med; 2000 Mar; 129(3):306-9. PubMed ID: 10776573 [No Abstract] [Full Text] [Related]
44. The net orientation of nicotinic receptor transmembrane alpha-helices in the resting and desensitized states. Hill DG; Baenziger JE Biophys J; 2006 Jul; 91(2):705-14. PubMed ID: 16648164 [TBL] [Abstract][Full Text] [Related]
45. Cations mediate interactions between the nicotinic acetylcholine receptor and anionic lipids. Sturgeon RM; Baenziger JE Biophys J; 2010 Mar; 98(6):989-98. PubMed ID: 20303856 [TBL] [Abstract][Full Text] [Related]
46. [Isolation and reconstitution of glutamate receptors on bilayer lipid membranes]. Tashmukhamedov BA; Makhmudova EM; Usmanov PB; Kazakov I; Atakuziev BU Dokl Akad Nauk SSSR; 1984; 276(4):977-9. PubMed ID: 6088200 [No Abstract] [Full Text] [Related]
47. Lipid bilayer microarray for parallel recording of transmembrane ion currents. Le Pioufle B; Suzuki H; Tabata KV; Noji H; Takeuchi S Anal Chem; 2008 Jan; 80(1):328-32. PubMed ID: 18001126 [TBL] [Abstract][Full Text] [Related]
48. Micropatterned composite membranes of polymerized and fluid lipid bilayers. Morigaki K; Kiyosue K; Taguchi T Langmuir; 2004 Aug; 20(18):7729-35. PubMed ID: 15323525 [TBL] [Abstract][Full Text] [Related]
49. Elastic curvature constants of lipid monolayers and bilayers. Marsh D Chem Phys Lipids; 2006; 144(2):146-59. PubMed ID: 17045578 [TBL] [Abstract][Full Text] [Related]
50. The interfacial tension of the lipid membrane formed from lipid-cholesterol and lipid-lipid systems. Petelska AD; Naumowicz M; Figaszewski ZA Cell Biochem Biophys; 2006; 44(2):205-11. PubMed ID: 16456222 [TBL] [Abstract][Full Text] [Related]
51. [Effect of glycerol on the capacity and conductivity of lipid bilayer membranes]. Rudenko SV; Gapochenko SD; Bondarenko VA Biofizika; 1984; 29(2):223-6. PubMed ID: 6722192 [TBL] [Abstract][Full Text] [Related]
52. Untangling Direct and Domain-Mediated Interactions Between Nicotinic Acetylcholine Receptors in DHA-Rich Membranes. Woods K; Sharp L; Brannigan G J Membr Biol; 2019 Oct; 252(4-5):385-396. PubMed ID: 31321460 [TBL] [Abstract][Full Text] [Related]
53. Retained activities of some membrane proteins in stable lipid bilayers on a solid support. Puu G; Gustafson I; Artursson E; Ohlsson PA Biosens Bioelectron; 1995; 10(5):463-76. PubMed ID: 7786470 [TBL] [Abstract][Full Text] [Related]
54. Reconstitution of the nicotinic acetylcholine receptor using a lipid substitution technique. Jones OT; Eubanks JH; Earnest JP; McNamee MG Biochim Biophys Acta; 1988 Oct; 944(3):359-66. PubMed ID: 2460140 [TBL] [Abstract][Full Text] [Related]
56. A highly stable and selective biosensor using modified nicotinic acetylcholine receptor (nAChR). Eray M; Dogan NS; Reiken SR; Sutisna H; Van Wie BJ; Koch AR; Moffett DF; Silber M; Davis WC Biosystems; 1995; 35(2-3):183-8. PubMed ID: 7488713 [TBL] [Abstract][Full Text] [Related]
57. A role for cholesterol as a structural effector of the nicotinic acetylcholine receptor. Fernandez-Ballester G; Castresana J; Fernandez AM; Arrondo JL; Ferragut JA; Gonzalez-Ros JM Biochemistry; 1994 Apr; 33(13):4065-71. PubMed ID: 8142409 [TBL] [Abstract][Full Text] [Related]
58. Signal transduction across cellular membranes. Changeux JP; Dennis SG Neurosci Res Program Bull; 1982 Feb; 20(3):267-426. PubMed ID: 6285224 [No Abstract] [Full Text] [Related]
59. Bovine seminal ribonuclease destabilizes negatively charged membranes. Mancheño JM; Gasset M; Oñaderra M; Gavilanes JG; D'Alessio G Biochem Biophys Res Commun; 1994 Feb; 199(1):119-24. PubMed ID: 8123002 [TBL] [Abstract][Full Text] [Related]
60. Excess chemical potential of small solutes across water--membrane and water--hexane interfaces. Pohorille A; Wilson MA J Chem Phys; 1996 Mar; 104(10):3760-73. PubMed ID: 11539401 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]