These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 15080757)
21. Existence of oriented ion-hydroxide clusters in concentrated aqueous NaCl solution at pH 13. Aziz EF; Eisebitt S; Eberhardt W; Cwiklik L; Jungwirth P J Phys Chem B; 2008 Jan; 112(4):1262-6. PubMed ID: 18173255 [TBL] [Abstract][Full Text] [Related]
22. Electroreduction of O(2) to water at 0.6 V (SHE) at pH 7 on the "wired" Pleurotus ostreatus laccase cathode. Barton SC; Pickard M; Vazquez-Duhalt R; Heller A Biosens Bioelectron; 2002 Dec; 17(11-12):1071-4. PubMed ID: 12392957 [TBL] [Abstract][Full Text] [Related]
23. Laccase-catalyzed removal of 2,4-dimethylphenol from synthetic wastewater: effect of polyethylene glycol and dissolved oxygen. Ghosh JP; Taylor KE; Bewtra JK; Biswas N Chemosphere; 2008 Apr; 71(9):1709-17. PubMed ID: 18267329 [TBL] [Abstract][Full Text] [Related]
24. Activity and stability of laccase in conjugation with chitosan. Delanoy G; Li Q; Yu J Int J Biol Macromol; 2005 Mar; 35(1-2):89-95. PubMed ID: 15769520 [TBL] [Abstract][Full Text] [Related]
25. High-level expression of Myrothecium verrucaria bilirubin oxidase in Pichia pastoris, and its facile purification and characterization. Kataoka K; Tanaka K; Sakai Y; Sakurai T Protein Expr Purif; 2005 May; 41(1):77-83. PubMed ID: 15802224 [TBL] [Abstract][Full Text] [Related]
26. Variable stoichiometry during the laccase-catalyzed oxidation of aqueous phenol. Kurniawati S; Nicell JA Biotechnol Prog; 2007; 23(2):389-97. PubMed ID: 17315888 [TBL] [Abstract][Full Text] [Related]
27. An alkali-stable enzyme with laccase activity from entophytic fungus and the enzymatic modification of alkali lignin. Weihua Q; Hongzhang C Bioresour Technol; 2008 Sep; 99(13):5480-4. PubMed ID: 18096384 [TBL] [Abstract][Full Text] [Related]
28. Point mutations at the type I Cu ligands, Cys457 and Met467, and at the putative proton donor, Asp105, in Myrothecium verrucaria bilirubin oxidase and reactions with dioxygen. Kataoka K; Kitagawa R; Inoue M; Naruse D; Sakurai T; Huang HW Biochemistry; 2005 May; 44(18):7004-12. PubMed ID: 15865445 [TBL] [Abstract][Full Text] [Related]
29. Exploring enzymatic catalysis at a solid surface: a case study with transglutaminase-mediated protein immobilization. Tanaka Y; Tsuruda Y; Nishi M; Kamiya N; Goto M Org Biomol Chem; 2007 Jun; 5(11):1764-70. PubMed ID: 17520145 [TBL] [Abstract][Full Text] [Related]
30. Effect of pH and ionic strength on competitive protein adsorption to air/water interfaces in aqueous foams made with mixed milk proteins. Zhang Z; Dalgleish DG; Goff HD Colloids Surf B Biointerfaces; 2004 Mar; 34(2):113-21. PubMed ID: 15261081 [TBL] [Abstract][Full Text] [Related]
31. Stability of ricobendazole in aqueous solutions. Wu Z; Tucker IG; Razzak M; Medlicott NJ J Pharm Biomed Anal; 2009 Jul; 49(5):1282-6. PubMed ID: 19342190 [TBL] [Abstract][Full Text] [Related]
32. Electrochemical catalytic treatment of wastewater by metal ion supported on cation exchange resin. Wang Y; Wang B; Ma H J Hazard Mater; 2006 Oct; 137(3):1853-8. PubMed ID: 16793204 [TBL] [Abstract][Full Text] [Related]
33. Mechanistic studies of the 'blue' Cu enzyme, bilirubin oxidase, as a highly efficient electrocatalyst for the oxygen reduction reaction. Dos Santos L; Climent V; Blanford CF; Armstrong FA Phys Chem Chem Phys; 2010 Nov; 12(42):13962-74. PubMed ID: 20852807 [TBL] [Abstract][Full Text] [Related]
34. A stable electrode for high-potential, electrocatalytic O(2) reduction based on rational attachment of a blue copper oxidase to a graphite surface. Blanford CF; Heath RS; Armstrong FA Chem Commun (Camb); 2007 May; (17):1710-2. PubMed ID: 17457416 [TBL] [Abstract][Full Text] [Related]
35. Mechanistic investigations of the reaction of an iron(III) octa-anionic porphyrin complex with hydrogen peroxide and the catalyzed oxidation of diammonium-2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate). Brausam A; Eigler S; Jux N; van Eldik R Inorg Chem; 2009 Aug; 48(16):7667-78. PubMed ID: 19601585 [TBL] [Abstract][Full Text] [Related]
36. Investigation of the salting out of methane from aqueous electrolyte solutions using computer simulations. Docherty H; Galindo A; Sanz E; Vega C J Phys Chem B; 2007 Aug; 111(30):8993-9000. PubMed ID: 17595128 [TBL] [Abstract][Full Text] [Related]
37. A comprehensive kinetic model of laccase-catalyzed oxidation of aqueous phenol. Kurniawati S; Nicell JA Biotechnol Prog; 2009; 25(3):763-73. PubMed ID: 19496113 [TBL] [Abstract][Full Text] [Related]
38. Kinetic model of laccase-catalyzed oxidation of aqueous phenol. Kurniawati S; Nicell JA Biotechnol Bioeng; 2005 Jul; 91(1):114-23. PubMed ID: 15889399 [TBL] [Abstract][Full Text] [Related]
39. dsDNA stability dependence on pH and salt concentration. Bergstrom DE; Zhang P; Paul N Biotechniques; 1998 Jun; 24(6):992-4. PubMed ID: 9631190 [No Abstract] [Full Text] [Related]
40. Ionic surfactant aggregates in saline solutions: sodium dodecyl sulfate (SDS) in the presence of excess sodium chloride (NaCl) or calcium chloride (CaCl(2)). Sammalkorpi M; Karttunen M; Haataja M J Phys Chem B; 2009 Apr; 113(17):5863-70. PubMed ID: 19344100 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]