BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 15080907)

  • 1. Homology modeling and molecular dynamics studies of a novel C3-like ADP-ribosyltransferase.
    Xiao JF; Li ZS; Sun CC
    Bioorg Med Chem; 2004 May; 12(9):2035-41. PubMed ID: 15080907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.
    Han S; Arvai AS; Clancy SB; Tainer JA
    J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exchange of glutamine-217 to glutamate of Clostridium limosum exoenzyme C3 turns the asparagine-specific ADP-ribosyltransferase into an arginine-modifying enzyme.
    Vogelsgesang M; Aktories K
    Biochemistry; 2006 Jan; 45(3):1017-25. PubMed ID: 16411778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the Clostridium limosum C3 exoenzyme.
    Vogelsgesang M; Stieglitz B; Herrmann C; Pautsch A; Aktories K
    FEBS Lett; 2008 Apr; 582(7):1032-6. PubMed ID: 18325337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel C3-like ADP-ribosyltransferase from Staphylococcus aureus modifying RhoE and Rnd3.
    Wilde C; Chhatwal GS; Schmalzing G; Aktories K; Just I
    J Biol Chem; 2001 Mar; 276(12):9537-42. PubMed ID: 11124969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rho-specific Bacillus cereus ADP-ribosyltransferase C3cer cloning and characterization.
    Wilde C; Vogelsgesang M; Aktories K
    Biochemistry; 2003 Aug; 42(32):9694-702. PubMed ID: 12911311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C3 exoenzyme from Clostridium botulinum: structure of a tetragonal crystal form and a reassessment of NAD-induced flexure.
    Evans HR; Holloway DE; Sutton JM; Ayriss J; Shone CC; Acharya KR
    Acta Crystallogr D Biol Crystallogr; 2004 Aug; 60(Pt 8):1502-5. PubMed ID: 15272191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rho-ADP-ribosylating exoenzyme from Bacillus cereus. Purification, characterization, and identification of the NAD-binding site.
    Just I; Selzer J; Jung M; van Damme J; Vandekerckhove J; Aktories K
    Biochemistry; 1995 Jan; 34(1):334-40. PubMed ID: 7819216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active site mutation of the C3-like ADP-ribosyltransferase from Clostridium limosum--analysis of glutamic acid 174.
    Böhmer J; Jung M; Sehr P; Fritz G; Popoff M; Just I; Aktories K
    Biochemistry; 1996 Jan; 35(1):282-9. PubMed ID: 8555186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The crystal structure of C3stau2 from Staphylococcus aureus and its complex with NAD.
    Evans HR; Sutton JM; Holloway DE; Ayriss J; Shone CC; Acharya KR
    J Biol Chem; 2003 Nov; 278(46):45924-30. PubMed ID: 12933793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate binding and catalysis of ecto-ADP-ribosyltransferase 2.2 from rat.
    Ritter H; Koch-Nolte F; Marquez VE; Schulz GE
    Biochemistry; 2003 Sep; 42(34):10155-62. PubMed ID: 12939142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational study of human phosphomannose isomerase: Insights from homology modeling and molecular dynamics simulation of enzyme bound substrate.
    Xiao J; Guo Z; Guo Y; Chu F; Sun P
    J Mol Graph Model; 2006 Nov; 25(3):289-95. PubMed ID: 16488169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Glu173 as the critical amino acid residue for the ADP-ribosyltransferase activity of Clostridium botulinum C3 exoenzyme.
    Saito Y; Nemoto Y; Ishizaki T; Watanabe N; Morii N; Narumiya S
    FEBS Lett; 1995 Sep; 371(2):105-9. PubMed ID: 7672106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-function analysis of the Rho-ADP-ribosylating exoenzyme C3stau2 from Staphylococcus aureus.
    Wilde C; Just I; Aktories K
    Biochemistry; 2002 Feb; 41(5):1539-44. PubMed ID: 11814347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions.
    de Souza RF; Aravind L
    Mol Biosyst; 2012 Jun; 8(6):1661-77. PubMed ID: 22399070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of diphtheria toxin bound to nicotinamide adenine dinucleotide.
    Bell CE; Eisenberg D
    Biochemistry; 1996 Jan; 35(4):1137-49. PubMed ID: 8573568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding human 15-hydroxyprostaglandin dehydrogenase binding with NAD+ and PGE2 by homology modeling, docking and molecular dynamics simulation.
    Hamza A; Cho H; Tai HH; Zhan CG
    Bioorg Med Chem; 2005 Jul; 13(14):4544-51. PubMed ID: 15908215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rho-modifying C3-like ADP-ribosyltransferases.
    Aktories K; Wilde C; Vogelsgesang M
    Rev Physiol Biochem Pharmacol; 2004; 152():1-22. PubMed ID: 15372308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NAD+ binding site of Clostridium botulinum C3 ADP-ribosyltransferase. Identification of peptide in the adenine ring binding domain using 2-azido NAD.
    Chavan AJ; Nemoto Y; Narumiya S; Kozaki S; Haley BE
    J Biol Chem; 1992 Jul; 267(21):14866-70. PubMed ID: 1634527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on the active-site structure of C3-like exoenzymes: involvement of glutamic acid in catalysis of ADP-ribosylation.
    Aktories K; Jung M; Böhmer J; Fritz G; Vandekerckhove J; Just I
    Biochimie; 1995; 77(5):326-32. PubMed ID: 8527485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.