These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 1508111)
1. Neutron capture therapy with 235U seeds. Liu HB; Brugger RM; Shih JL Med Phys; 1992; 19(3):705-8. PubMed ID: 1508111 [TBL] [Abstract][Full Text] [Related]
2. Physical and biological doses produced from neutron capture in a 235U foil. Liu HB; Brugger RM; Laster BH; Greenberg DD; Gordon CR; Warkentien LS Med Phys; 1995 May; 22(5):591-5. PubMed ID: 7643798 [TBL] [Abstract][Full Text] [Related]
3. Dose distributions in a human head phantom for neutron capture therapy using moderated neutrons from the 2.5 meV proton-7Li reaction or from fission of 235U. Tanaka K; Kobayashi T; Sakurai Y; Nakagawa Y; Endo S; Hoshi M Phys Med Biol; 2001 Oct; 46(10):2681-95. PubMed ID: 11686282 [TBL] [Abstract][Full Text] [Related]
4. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy. Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755 [TBL] [Abstract][Full Text] [Related]
5. Neutron induced brachytherapy: a combination of neutron capture therapy and brachytherapy. Shih JL; Brugger RM Med Phys; 1992; 19(2):369-75. PubMed ID: 1584135 [TBL] [Abstract][Full Text] [Related]
6. Design of a high-flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor. Liu HB; Brugger RM; Rorer DC; Tichler PR; Hu JP Med Phys; 1994 Oct; 21(10):1627-31. PubMed ID: 7869995 [TBL] [Abstract][Full Text] [Related]
7. A fundamental study on hyper-thermal neutrons for neutron capture therapy. Sakurai Y; Kobayashi T; Kanda K Phys Med Biol; 1994 Dec; 39(12):2217-27. PubMed ID: 15551549 [TBL] [Abstract][Full Text] [Related]
8. Measurement of augmentation of 252Cf implant by 10B and 157Gd neutron capture. Wierzbicki JG; Maruyama Y; Porter AT Med Phys; 1994 Jun; 21(6):787-90. PubMed ID: 7935215 [TBL] [Abstract][Full Text] [Related]
9. Gadolinium neutron capture brachytherapy (GdNCB), a new treatment method for intravascular brachytherapy. Enger SA; Rezaei A; Munck af Rosenschöld P; Lundqvist H Med Phys; 2006 Jan; 33(1):46-51. PubMed ID: 16485408 [TBL] [Abstract][Full Text] [Related]
10. Measurements and calculations of thermal neutron fluence rate and neutron energy spectra resulting from moderation of 252Cf fast neutrons: applications for neutron capture therapy. Rivard MJ Med Phys; 2000 Aug; 27(8):1761-9. PubMed ID: 10984222 [TBL] [Abstract][Full Text] [Related]
11. Development and characteristics of the HANARO neutron irradiation facility for applications in the boron neutron capture therapy field. Kim MS; Lee BC; Hwang SY; Kim H; Jun BJ Phys Med Biol; 2007 May; 52(9):2553-66. PubMed ID: 17440252 [TBL] [Abstract][Full Text] [Related]
12. Response of Harshaw neutron thermoluminescence dosemeters in terms of the revised ICRP/ICRU recommendations. Veinot KG; Hertel NE Radiat Prot Dosimetry; 2005; 113(4):442-8. PubMed ID: 15788417 [TBL] [Abstract][Full Text] [Related]
13. Combined use of FLUKA and MCNP-4A for the Monte Carlo simulation of the dosimetry of 10B neutron capture enhancement of fast neutron irradiations. Pignol JP; Cuendet P; Brassart N; Fares G; Colomb F; M'Bake Diop C; Sabattier R; Hachem A; Prevot G Med Phys; 1998 Jun; 25(6):885-91. PubMed ID: 9650176 [TBL] [Abstract][Full Text] [Related]
14. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs. Chibani O; Ma CM Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965 [TBL] [Abstract][Full Text] [Related]
15. Computational assessment of deep-seated tumor treatment capability of the 9Be(d,n)10B reaction for accelerator-based boron neutron capture therapy (AB-BNCT). Capoulat ME; Minsky DM; Kreiner AJ Phys Med; 2014 Mar; 30(2):133-46. PubMed ID: 23880544 [TBL] [Abstract][Full Text] [Related]
16. Calculation of dose components in head phantom for boron neutron capture therapy. da Silva AX; Crispim VR Cell Mol Biol (Noisy-le-grand); 2002 Nov; 48(7):813-7. PubMed ID: 12622057 [TBL] [Abstract][Full Text] [Related]
17. The neutron sensitivity of dosimeters applied to boron neutron capture therapy. Raaijmakers CP; Watkins PR; Nottelman EL; Verhagen HW; Jansen JT; Zoetelief J; Mijnheer BJ Med Phys; 1996 Sep; 23(9):1581-9. PubMed ID: 8892256 [TBL] [Abstract][Full Text] [Related]
18. Interaction between the biological effects of high- and low-LET radiation dose components in a mixed field exposure. Mason AJ; Giusti V; Green S; Munck af Rosenschöld P; Beynon TD; Hopewell JW Int J Radiat Biol; 2011 Dec; 87(12):1162-72. PubMed ID: 21923301 [TBL] [Abstract][Full Text] [Related]
19. Differential absorbed dose distributions in lineal energy for neutrons and gamma rays at the mono-energetic neutron calibration facility. Takada M; Baba M; Yamaguchi H; Fujitaka K Radiat Prot Dosimetry; 2005; 114(4):481-90. PubMed ID: 15914511 [TBL] [Abstract][Full Text] [Related]
20. Boron neutron capture therapy for the treatment of cerebral gliomas. I. Theoretical evaluation of the efficacy of various neutron beams. Zamenhof RG; Murray BW; Brownell GL; Wellum GR; Tolpin EI Med Phys; 1975; 2(2):47-60. PubMed ID: 1186617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]