These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 15081346)
1. Interaction of amphotericin B and its low toxic derivative, N-methyl-N-D-fructosyl amphotericin B methyl ester, with fungal, mammalian and bacterial cells measured by the energy transfer method. Szlinder-Richert J; Cybulska B; Grzybowska J; Bolard J; Borowski E Farmaco; 2004 Apr; 59(4):289-96. PubMed ID: 15081346 [TBL] [Abstract][Full Text] [Related]
2. Comparative studies on cell stimulatory, permeabilizing and toxic effects induced in sensitive and multidrug resistant fungal strains by amphotericin B (AMB) and N-methyl-N-D-fructosyl amphotericin B methyl ester (MFAME). Szlinder-Richert J; Cybulska B; Grzybowska J; Borowski E; Prasad R Acta Biochim Pol; 2000; 47(1):133-40. PubMed ID: 10961686 [TBL] [Abstract][Full Text] [Related]
3. Comparative in vitro studies on liposomal formulations of amphotericin B and its derivative, N-methyl-N-D-fructosyl amphotericin B methyl ester (MFAME). Cybulska B; Kupczyk K; Szlinder-Richert J; Borowski E Acta Biochim Pol; 2002; 49(1):67-75. PubMed ID: 12136958 [TBL] [Abstract][Full Text] [Related]
4. N-Methyl-N-D-fructosyl amphotericin B methyl ester (MF-AME), a novel antifungal agent of low toxicity: monomer/micelle control over selective toxicity. Cybulska B; Gadomska I; Mazerski J; Borowski JGE ; Cheron M; Bolard J Acta Biochim Pol; 2000; 47(1):121-31. PubMed ID: 10961685 [TBL] [Abstract][Full Text] [Related]
5. MFAME, N-methyl-N-D-fructosyl amphotericin B methyl ester, a new amphotericin B derivative of low toxicity: relationship between self-association and effects on red blood cells. Szlinder-Richert J; Mazerski J; Cybulska B; Grzybowska J; Borowski E Biochim Biophys Acta; 2001 Sep; 1528(1):15-24. PubMed ID: 11514093 [TBL] [Abstract][Full Text] [Related]
6. Interaction of amphotericin B and its N-fructosyl derivative with murine thymocytes: a comparative study using fluorescent membrane probes. Henry-Toulmé N; Seman M; Bolard J Biochim Biophys Acta; 1989 Jul; 982(2):245-52. PubMed ID: 2787669 [TBL] [Abstract][Full Text] [Related]
7. Fluorescence studies on the molecular action of amphotericin B on susceptible and resistant fungal cells. Haynes MP; Chong PL; Buckley HR; Pieringer RA Biochemistry; 1996 Jun; 35(24):7983-92. PubMed ID: 8672502 [TBL] [Abstract][Full Text] [Related]
8. Comparative in vitro antifungal susceptibility activity of amphotericin B versus amphotericin B methyl ester against Candida albicans ocular isolates. Thanathanee O; Miller D; Ringel DM; Schaffner CP; Alfonso EC; O'Brien TP J Ocul Pharmacol Ther; 2012 Dec; 28(6):589-92. PubMed ID: 22788845 [TBL] [Abstract][Full Text] [Related]
9. The mechanism of overcoming multidrug resistance (MDR) of fungi by amphotericin B and its derivatives. Slisz M; Cybulska B; Grzybowska J; Czub J; Prasad R; Borowski E J Antibiot (Tokyo); 2007 Jul; 60(7):436-46. PubMed ID: 17721002 [TBL] [Abstract][Full Text] [Related]
10. Comparative in vitro and in vivo evaluation of N-D-ornithyl amphotericin B methyl ester, amphotericin B methyl ester, and amphotericin B. Parmegiani RM; Loebenberg D; Antonacci B; Yarosh-Tomaine T; Scupp R; Wright JJ; Chiu PJ; Miller GH Antimicrob Agents Chemother; 1987 Nov; 31(11):1756-60. PubMed ID: 3324961 [TBL] [Abstract][Full Text] [Related]
11. N-(1-piperidinepropionyl)amphotericin B methyl ester (PAME)--a new derivative of the antifungal antibiotic amphotericin B: searching for the mechanism of its reduced toxicity. Hac-Wydro K; Dynarowicz-Latka P; Grzybowska J; Borowski E J Colloid Interface Sci; 2005 Jul; 287(2):476-84. PubMed ID: 15925613 [TBL] [Abstract][Full Text] [Related]
12. Kinetic study of interaction between [14C]amphotericin B derivatives and human erythrocytes: relationship between binding and induced K+ leak. Wietzerbin J; Szponarski W; Borowski E; Gary-Bobo CM Biochim Biophys Acta; 1990 Jul; 1026(1):93-8. PubMed ID: 2378883 [TBL] [Abstract][Full Text] [Related]
13. Amphotericin B-copper(II) complex as a potential agent with higher antifungal activity against Candida albicans. Chudzik B; Tracz IB; Czernel G; Fiołka MJ; Borsuk G; Gagoś M Eur J Pharm Sci; 2013 Aug; 49(5):850-7. PubMed ID: 23791641 [TBL] [Abstract][Full Text] [Related]
14. Comparative susceptibility of Candida albicans to amphotericin B and amphotericin B methyl ester. Bannatyne RM; Cheung R Antimicrob Agents Chemother; 1977 Oct; 12(4):449-50. PubMed ID: 335958 [TBL] [Abstract][Full Text] [Related]
15. Enhancement effect of N-methyl-N″-dodecylguanidine on the vacuole-targeting fungicidal activity of amphotericin B against the pathogenic fungus Candida albicans. Yutani M; Ogita A; Usuki Y; Fujita K; Tanaka T J Antibiot (Tokyo); 2011 Jul; 64(7):469-74. PubMed ID: 21522157 [TBL] [Abstract][Full Text] [Related]
16. Unique aggregation of conjugated amphotericin B and its interaction with lipid membranes. Kagan S; Ickowicz DE; Domb AJ; Dagan A; Polacheck I Med Mycol; 2017 Jun; 55(4):414-421. PubMed ID: 28339539 [TBL] [Abstract][Full Text] [Related]
17. Interactions of amphotericin B derivative of low toxicity with biological membrane components--the Langmuir monolayer approach. Hac-Wydro K; Dynarowicz-Łatka P; Grzybowska J; Borowski E Biophys Chem; 2005 Jun; 116(1):77-88. PubMed ID: 15911084 [TBL] [Abstract][Full Text] [Related]
18. Toxicity mechanisms of amphotericin B and its neutralization by conjugation with arabinogalactan. Kagan S; Ickowicz D; Shmuel M; Altschuler Y; Sionov E; Pitusi M; Weiss A; Farber S; Domb AJ; Polacheck I Antimicrob Agents Chemother; 2012 Nov; 56(11):5603-11. PubMed ID: 22908154 [TBL] [Abstract][Full Text] [Related]
20. How do sterols determine the antifungal activity of amphotericin B? Free energy of binding between the drug and its membrane targets. Neumann A; Baginski M; Czub J J Am Chem Soc; 2010 Dec; 132(51):18266-72. PubMed ID: 21126070 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]