BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 15081369)

  • 21. Evidence for both tyrosine kinase and G-protein-coupled pathways leading to starfish egg activation.
    Shilling FM; Carroll DJ; Muslin AJ; Escobedo JA; Williams LT; Jaffe LA
    Dev Biol; 1994 Apr; 162(2):590-9. PubMed ID: 8150217
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein tyrosine kinase-dependent release of intracellular calcium in the sea urchin egg.
    Shen SS; Kinsey WH; Lee SJ
    Dev Growth Differ; 1999 Jun; 41(3):345-55. PubMed ID: 10400396
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A wave of IP3 production accompanies the fertilization Ca2+ wave in the egg of the frog, Xenopus laevis: theoretical and experimental support.
    Wagner J; Fall CP; Hong F; Sims CE; Allbritton NL; Fontanilla RA; Moraru II; Loew LM; Nuccitelli R
    Cell Calcium; 2004 May; 35(5):433-47. PubMed ID: 15003853
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium oscillations and mammalian egg activation.
    Malcuit C; Kurokawa M; Fissore RA
    J Cell Physiol; 2006 Mar; 206(3):565-73. PubMed ID: 16155907
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Different Ca2+-releasing abilities of sperm extracts compared with tissue extracts and phospholipase C isoforms in sea urchin egg homogenate and mouse eggs.
    Jones KT; Matsuda M; Parrington J; Katan M; Swann K
    Biochem J; 2000 Mar; 346 Pt 3(Pt 3):743-9. PubMed ID: 10698702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Requirement of a Src family kinase for initiating calcium release at fertilization in starfish eggs.
    Giusti AF; Carroll DJ; Abassi YA; Terasaki M; Foltz KR; Jaffe LA
    J Biol Chem; 1999 Oct; 274(41):29318-22. PubMed ID: 10506191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The calcium transient in sea urchin eggs during fertilization requires the production of inositol 1,4,5-trisphosphate.
    Lee SJ; Shen SS
    Dev Biol; 1998 Jan; 193(2):195-208. PubMed ID: 9473324
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cloning and characterization of a phospholipase C-beta isoform from the sea urchin Lytechinus pictus.
    Kulisz A; Dowal L; Scarlata S; Shen SS
    Dev Growth Differ; 2005 Jun; 47(5):307-21. PubMed ID: 16026539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Uroplakin III, a novel Src substrate in Xenopus egg rafts, is a target for sperm protease essential for fertilization.
    Mahbub Hasan AK; Sato K; Sakakibara K; Ou Z; Iwasaki T; Ueda Y; Fukami Y
    Dev Biol; 2005 Oct; 286(2):483-92. PubMed ID: 16168405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Serotonin stimulates GnRH secretion through the c-Src-PLC gamma1 pathway in GT1-7 hypothalamic cells.
    Kim HS; Yumkham S; Choi JH; Son GH; Kim K; Ryu SH; Suh PG
    J Endocrinol; 2006 Sep; 190(3):581-91. PubMed ID: 17003259
    [TBL] [Abstract][Full Text] [Related]  

  • 31. betagamma subunits of heterotrimeric G-proteins contribute to Ca2+ release at fertilization in the sea urchin.
    Voronina E; Wessel GM
    J Cell Sci; 2004 Dec; 117(Pt 25):5995-6005. PubMed ID: 15536121
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Src homology domains in phospholipase C-gamma1 mediate its anti-apoptotic action through regulating the enzymatic activity.
    Liu X; Ye K
    J Neurochem; 2005 May; 93(4):892-8. PubMed ID: 15857392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PLCγ, G-protein of the Gαq type and cADPr pathway are associated to trigger the fertilization Ca2+ signal in the sea urchin egg.
    Tosca L; Glass R; Bronchain O; Philippe L; Ciapa B
    Cell Calcium; 2012 Nov; 52(5):388-96. PubMed ID: 22784667
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation and characterization of sea urchin egg lipid rafts and their possible function during fertilization.
    Belton RJ; Adams NL; Foltz KR
    Mol Reprod Dev; 2001 Jul; 59(3):294-305. PubMed ID: 11424215
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The involvement of Src family kinases (SFKs) in the events leading to resumption of meiosis.
    Tomashov-Matar R; Levi M; Shalgi R
    Mol Cell Endocrinol; 2008 Jan; 282(1-2):56-62. PubMed ID: 18166263
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phospholipid binding properties and functional characterization of a sea urchin phospholipase Cdelta in urchin and mouse eggs.
    Coward K; Owen H; Tunwell R; Swann K; Parrington J
    Biochem Biophys Res Commun; 2007 Jun; 357(4):964-70. PubMed ID: 17466265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measurement of intracellular IP3 during Ca2+ oscillations in mouse eggs with GFP-based FRET probe.
    Shirakawa H; Ito M; Sato M; Umezawa Y; Miyazaki S
    Biochem Biophys Res Commun; 2006 Jun; 345(2):781-8. PubMed ID: 16701560
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Disassembly of Subplasmalemmal Actin Filaments Induces Cytosolic Ca2+ Increases in Astropecten aranciacus Eggs.
    Vasilev F; Limatola N; Park DR; Kim UH; Santella L; Chun JT
    Cell Physiol Biochem; 2018; 48(5):2011-2034. PubMed ID: 30099438
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phospholipase C-gamma1: a phospholipase and guanine nucleotide exchange factor.
    Wang Z; Moran MF
    Mol Interv; 2002 Oct; 2(6):352-5,338. PubMed ID: 14993410
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of phospholipase Cgamma at fertilization and during mitosis in sea urchin eggs and embryos.
    Shearer J; De Nadai C; Emily-Fenouil F; Gache C; Whitaker M; Ciapa B
    Development; 1999 May; 126(10):2273-84. PubMed ID: 10207151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.