These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 15081702)

  • 1. Element accumulation in boreal bryophytes, lichens and vascular plants exposed to heavy metal and sulfur deposition in Finland.
    Salemaa M; Derome J; Helmisaari HS; Nieminen T; Vanha-Majamaa I
    Sci Total Environ; 2004 May; 324(1-3):141-60. PubMed ID: 15081702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and an epiphytic lichen.
    Basile A; Sorbo S; Aprile G; Conte B; Castaldo Cobianchi R
    Environ Pollut; 2008 Jan; 151(2):401-7. PubMed ID: 18179850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atmospheric heavy metal deposition in Finland during 1985-2000 using mosses as bioindicators.
    Poikolainen J; Kubin E; Piispanen J; Karhu J
    Sci Total Environ; 2004 Jan; 318(1-3):171-85. PubMed ID: 14654283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lichens as a tool for biogeochemical prospecting.
    Chettri MK; Sawidis T; Karataglis S
    Ecotoxicol Environ Saf; 1997 Dec; 38(3):322-35. PubMed ID: 9469887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of industrial pollution on the distribution of 137Cs in soil and the soil-to-plant transfer in a pine forest in SW Finland.
    Outola I; Pehrman R; Jaakkola T
    Sci Total Environ; 2003 Mar; 303(3):221-30. PubMed ID: 12606162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal contamination in the lichen Alectoria sarmentosa near the copper smelter of Murdochville, Québec.
    Aznar JC; Richer-Laflèche M; Cluis D
    Environ Pollut; 2008 Nov; 156(1):76-81. PubMed ID: 18289751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of trace metal levels in some moss and lichen samples collected from near the motorway in Turkey.
    Mendil D; Celik F; Tuzen M; Soylak M
    J Hazard Mater; 2009 Jul; 166(2-3):1344-50. PubMed ID: 19153010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of industrial metals on wild fish populations along a metal contamination gradient.
    Pyle GG; Rajotte JW; Couture P
    Ecotoxicol Environ Saf; 2005 Jul; 61(3):287-312. PubMed ID: 15922796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of season and low-level air pollution on physiology and element content of lichens from the U.S. Pacific Northwest.
    Ra HS; Geiser LH; Crang RF
    Sci Total Environ; 2005 May; 343(1-3):155-67. PubMed ID: 15862842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understorey vegetation along a heavy-metal pollution gradient in SW Finland.
    Salemaa M; Vanha-Majamaa I; Derome J
    Environ Pollut; 2001; 112(3):339-50. PubMed ID: 11291440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation of airborne trace elements in mosses, lichens and synthetic materials exposed at urban monitoring stations: towards a harmonisation of the moss-bag technique.
    Giordano S; Adamo P; Spagnuolo V; Tretiach M; Bargagli R
    Chemosphere; 2013 Jan; 90(2):292-9. PubMed ID: 22901434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal bioaccumulation in plant leaves from an industrious area and the botanical garden in Beijing.
    Liu YJ; Ding H; Zhu YG
    J Environ Sci (China); 2005; 17(2):294-300. PubMed ID: 16295909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomonitoring using the lichen Hypogymnia physodes and bark samples near Zlatna, Romania immediately following closure of a copper ore-processing plant.
    Rusu AM; Jones GC; Chimonides PD; Purvis OW
    Environ Pollut; 2006 Sep; 143(1):81-8. PubMed ID: 16368174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elemental chemistry of four lichen species from the Apostle Islands, Wisconsin, 1987, 1995 and 2001.
    Bennett JP; Wetmore CM
    Sci Total Environ; 2003 Apr; 305(1-3):77-86. PubMed ID: 12670759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge.
    Bose S; Bhattacharyya AK
    Chemosphere; 2008 Jan; 70(7):1264-72. PubMed ID: 17825356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active biomonitoring of element uptake with terrestrial mosses: a comparison of bulk and dry deposition.
    Couto JA; Fernández JA; Aboal JR; Carballeira A
    Sci Total Environ; 2004 May; 324(1-3):211-22. PubMed ID: 15081707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy metal accumulation in four species of sea turtles from the Baja California peninsula, Mexico.
    Gardner SC; Fitzgerald SL; Vargas BA; Rodríguez LM
    Biometals; 2006 Feb; 19(1):91-9. PubMed ID: 16502335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in total concentrations and assessed background concentrations of heavy metals in moss in Lithuania and the Czech Republic between 1995 and 2005.
    Sakalys J; Kvietkus K; Sucharová J; Suchara I; Valiulis D
    Chemosphere; 2009 Jun; 76(1):91-7. PubMed ID: 19269004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China.
    Quan WM; Han JD; Shen AL; Ping XY; Qian PL; Li CJ; Shi LY; Chen YQ
    Mar Environ Res; 2007 Jul; 64(1):21-37. PubMed ID: 17306362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Moss (Bryum radiculosum) as a bioindicator of trace metal deposition around an industrialised area in Sardinia (Italy).
    Schintu M; Cogoni A; Durante L; Cantaluppi C; Contu A
    Chemosphere; 2005 Jul; 60(5):610-8. PubMed ID: 15963799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.