BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 15081709)

  • 61. Heavy metal displacement in EDTA-assisted phytoremediation of biosolids soil.
    Liphadzi S; Kirkham MB
    Water Sci Technol; 2006; 54(5):147-53. PubMed ID: 17087380
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Characteristics of Cd uptake and accumulation in two Cd accumulator oilseed rape species.
    Ru SH; Wang JQ; Su DC
    J Environ Sci (China); 2004; 16(4):594-8. PubMed ID: 15495963
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils.
    Manousaki E; Kadukova J; Papadantonakis N; Kalogerakis N
    Environ Res; 2008 Mar; 106(3):326-32. PubMed ID: 17543928
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effects of amendments of N, P, Fe on phytoextraction of Cd, Pb, Cu, and Zn in soil of Zhangshi by mustard, cabbage, and sugar beet.
    Sun L; Niu Z; Sun T
    Environ Toxicol; 2007 Dec; 22(6):565-71. PubMed ID: 18000847
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: effects of cadmium speciation.
    Wang KS; Huang LC; Lee HS; Chen PY; Chang SH
    Chemosphere; 2008 Jun; 72(4):666-72. PubMed ID: 18471856
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Lead phytoextraction from contaminated soil with high-biomass plant species.
    Shen ZG; Li XD; Wang CC; Chen HM; Chua H
    J Environ Qual; 2002; 31(6):1893-900. PubMed ID: 12469839
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Growth and elemental accumulation by canola on soil amended with coal fly ash.
    Yunusa IA; Manoharan V; DeSilva DL; Eamus D; Murray BR; Nissanka SP
    J Environ Qual; 2008; 37(3):1263-70. PubMed ID: 18453446
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L.
    Seth CS; Kumar Chaturvedi P; Misra V
    Ecotoxicol Environ Saf; 2008 Sep; 71(1):76-85. PubMed ID: 18082263
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The use of NTA for lead phytoextraction from soil from a battery recycling site.
    Freitas EV; do Nascimento CW
    J Hazard Mater; 2009 Nov; 171(1-3):833-7. PubMed ID: 19595509
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The use of chloro-complexation to enhance cadmium uptake by Zea mays and Brassica juncea: testing a "free ion activity model" and implications for phytoremediation.
    López-Chuken UJ; Young SD; Sánchez-González MN
    Int J Phytoremediation; 2010 Sep; 12(7):680-96. PubMed ID: 21166276
    [TBL] [Abstract][Full Text] [Related]  

  • 71. EDTA-assisted phytoextraction of lead and cadmium by Pelargonium cultivars grown on spiked soil.
    Gul I; Manzoor M; Silvestre J; Rizwan M; Hina K; Kallerhoff J; Arshad M
    Int J Phytoremediation; 2019; 21(2):101-110. PubMed ID: 30663884
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Contribution of AM inoculation and cattle manure to lead and cadmium phytoremediation by tobacco plants.
    Wang FY; Shi ZY; Xu XF; Wang XG; Li YJ
    Environ Sci Process Impacts; 2013 Apr; 15(4):794-801. PubMed ID: 23407649
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of chemical amendments on the concentration of cadmium and lead in long-term contaminated soils.
    Lee TM; Lai HY; Chen ZS
    Chemosphere; 2004 Dec; 57(10):1459-71. PubMed ID: 15519390
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil--a preliminary study.
    Li H; Wang Q; Cui Y; Dong Y; Christie P
    Sci Total Environ; 2005 Mar; 339(1-3):179-87. PubMed ID: 15740768
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effect of cadmium and ethylenediamine tetraacetic acid supplementation on cadmium accumulation by roots of Brassica species in Cd spiked soil.
    Dhaliwal SS; Sharma V; Taneja PK; Shukla AK; Kaur L; Verma G; Verma V; Singh J
    Environ Sci Pollut Res Int; 2022 Jan; 29(4):6000-6009. PubMed ID: 34431059
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil.
    Liang Y; Wong JW; Wei L
    Chemosphere; 2005 Jan; 58(4):475-83. PubMed ID: 15620739
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Leaching characteristics of EDTA-enhanced phytoextraction of Cd and Pb by Zea mays L. in different particle-size fractions of soil aggregates exposed to artificial rain.
    Lu Y; Luo D; Lai A; Liu G; Liu L; Long J; Zhang H; Chen Y
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1845-1853. PubMed ID: 27796994
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Comparison of organic and inorganic amendments for enhancing soil lead phytoextraction by wheat (Triticum aestivum L.).
    Saifullah ; Ghafoor A; Zia MH; Murtaza G; Waraich EA; Bibi S; Srivastava P
    Int J Phytoremediation; 2010 Sep; 12(7):633-49. PubMed ID: 21166273
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Phytoremediation of cadmium improved with the high production of endogenous phenolics and free proline contents in Parthenium hysterophorus plant treated exogenously with plant growth regulator and chelating agent.
    Ali N; Hadi F
    Environ Sci Pollut Res Int; 2015 Sep; 22(17):13305-18. PubMed ID: 25940488
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Selection of appropriate organic additives for enhancing Zn and Cd phytoextraction by hyperaccumulators.
    Wu QT; Deng JC; Long XX; Morel JL; Schwartz C
    J Environ Sci (China); 2006; 18(6):1113-8. PubMed ID: 17294951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.