These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 15081735)
21. Comparison treatment of various chlorophenols by electro-Fenton method: relationship between chlorine content and degradation. Song-hu Y; Xiao-hua L J Hazard Mater; 2005 Feb; 118(1-3):85-92. PubMed ID: 15721532 [TBL] [Abstract][Full Text] [Related]
22. Removal of chlorophenols in aqueous solution by carbon black low-cost adsorbents. Equilibrium study and influence of operation conditions. Domínguez-Vargas JR; Navarro-Rodríguez JA; de Heredia JB; Cuerda-Correa EM J Hazard Mater; 2009 Sep; 169(1-3):302-8. PubMed ID: 19403238 [TBL] [Abstract][Full Text] [Related]
23. Toxicity increases in ice containing monochlorophenols upon photolysis: environmental consequences. Bláha L; Klánová J; Klán P; Janosek J; Skarek M; Růzicka R Environ Sci Technol; 2004 May; 38(10):2873-8. PubMed ID: 15212262 [TBL] [Abstract][Full Text] [Related]
24. An investigation of chlorophenol proton affinities and their influence on the biological activity of microorganisms. Basheer MM; Custodio R; Volpe PL; Rittner R J Phys Chem A; 2006 Feb; 110(5):2021-6. PubMed ID: 16451037 [TBL] [Abstract][Full Text] [Related]
25. A standardized method for assessment of oxidative transformations of brominated phenols in water. Bastos PM; Eriksson J; Green N; Bergman A Chemosphere; 2008 Jan; 70(7):1196-202. PubMed ID: 17897700 [TBL] [Abstract][Full Text] [Related]
26. Laccase mediated biodegradation of 2,4-dichlorophenol using response surface methodology. Bhattacharya SS; Banerjee R Chemosphere; 2008 Aug; 73(1):81-5. PubMed ID: 18590926 [TBL] [Abstract][Full Text] [Related]
27. In situ electrochemical assessment of cytotoxicity of chlorophenols in MCF-7 and HeLa cells. Qin H; Liu J; Zhang Z; Li J; Gao G; Yang Y; Yuan X; Wu D Anal Biochem; 2014 Oct; 462():60-6. PubMed ID: 24973716 [TBL] [Abstract][Full Text] [Related]
28. Comment on "A computational study on enzymatically driven oxidative coupling of chlorophenols: an indirect dehalogenation reaction [Szatkowski and Dybala-Defratyka, Chemosphere 91 (2013) 258-264]". Rayne S Chemosphere; 2013 Nov; 93(9):2203. PubMed ID: 23673363 [No Abstract] [Full Text] [Related]
29. The QSPR (quantitative structure-property relationship) study about the anaerobic biodegradation of chlorophenols. Dai Y; Yang D; Zhu F; Wu L; Yang X; Li J Chemosphere; 2006 Dec; 65(11):2427-33. PubMed ID: 16750555 [TBL] [Abstract][Full Text] [Related]
30. Reply to comment on "A computational study on enzymatically driven oxidative coupling of chlorophenols: an indirect dehalogenation reaction [Szatkowski and Dybala-Defratyka, Chemosphere 91 (2013) 258-264]". Szatkowski L; Dybala-Defratyka A Chemosphere; 2013 Nov; 93(9):2204. PubMed ID: 23816455 [No Abstract] [Full Text] [Related]
31. [Human ecology and interdisciplinary cooperation for primary prevention of environmental risk factors for public health]. Dobrowolski JW Przegl Lek; 2007; 64 Suppl 4():35-41. PubMed ID: 18540323 [TBL] [Abstract][Full Text] [Related]
33. The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate. Graham N; Jiang CC; Li XZ; Jiang JQ; Ma J Chemosphere; 2004 Sep; 56(10):949-56. PubMed ID: 15268961 [TBL] [Abstract][Full Text] [Related]
34. Transformations of nanomaterials in the environment. Lowry GV; Gregory KB; Apte SC; Lead JR Environ Sci Technol; 2012 Jul; 46(13):6893-9. PubMed ID: 22582927 [TBL] [Abstract][Full Text] [Related]
35. Effects of pH and temperature on isotherm parameters of chlorophenols biosorption to anaerobic granular sludge. Gao R; Wang J J Hazard Mater; 2007 Jul; 145(3):398-403. PubMed ID: 17174025 [TBL] [Abstract][Full Text] [Related]
36. Quantitative structure activity relationship (QSAR) for toxicity of chlorophenols on L929 cells in vitro. Liu X; Chen J; Yu H; Zhao J; Giesy JP; Wang X Chemosphere; 2006 Sep; 64(10):1619-26. PubMed ID: 16790261 [TBL] [Abstract][Full Text] [Related]
37. Environmental significance of O-demethylation of chloroanisoles by soil bacterial isolates as a mechanism that improves the overall biodegradation of chlorophenols. Goswami M; Recio E; Campoy S; Martín JF; Coque JJ Environ Microbiol; 2007 Oct; 9(10):2512-21. PubMed ID: 17803776 [TBL] [Abstract][Full Text] [Related]
38. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Valavanidis A; Vlahogianni T; Dassenakis M; Scoullos M Ecotoxicol Environ Saf; 2006 Jun; 64(2):178-89. PubMed ID: 16406578 [TBL] [Abstract][Full Text] [Related]
39. Indications for synergetic and antagonistic effects between trace elements in the environment to human health. Obhodas J; Tucak-Zorić S; Kutle A; Valković V Coll Antropol; 2007 Mar; 31(1):209-19. PubMed ID: 17598404 [TBL] [Abstract][Full Text] [Related]
40. Effect of chlorinated phenol derivatives on various cell models. Cernáková M Folia Microbiol (Praha); 1994; 39(4):315-20. PubMed ID: 7729768 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]