BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 15081754)

  • 1. Oxidation of the arsenic-rich concentrate at the Prebuz abandoned mine (Erzgebirge Mts., CZ): mineralogical evolution.
    Filippi M
    Sci Total Environ; 2004 Apr; 322(1-3):271-82. PubMed ID: 15081754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic release from arsenopyrite weathering: insights from sequential extraction and microscopic studies.
    Basu A; Schreiber ME
    J Hazard Mater; 2013 Nov; 262():896-904. PubMed ID: 23312782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of arsenopyrite weathering products in mine wastes from abandoned tungsten and tin exploitations.
    Murciego A; Alvarez-Ayuso E; Pellitero E; Rodríguez MA; García-Sánchez A; Tamayo A; Rubio J; Rubio F; Rubin J
    J Hazard Mater; 2011 Feb; 186(1):590-601. PubMed ID: 21130565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman microspectroscopy as a valuable additional method to X-ray diffraction and electron microscope/microprobe analysis in the study of iron arsenates in environmental samples.
    Filippi M; Machovic V; Drahota P; Böhmová V
    Appl Spectrosc; 2009 Jun; 63(6):621-6. PubMed ID: 19531289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geochemical fractionation and mineralogy of metal(loid)s in abandoned mine soils: Insights into arsenic behaviour and implications to remediation.
    Fazle Bari ASM; Lamb D; Choppala G; Bolan N; Seshadri B; Rahman MA; Rahman MM
    J Hazard Mater; 2020 Nov; 399():123029. PubMed ID: 32937709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of secondary products in arsenopyrite-bearing mine wastes: influence of cementation on arsenic attenuation.
    Murciego A; Álvarez-Ayuso E; Aldana-Martínez SC; Sanz-Arranz A; Medina-García J; Rull-Pérez F; Villar-Alonso P
    J Hazard Mater; 2019 Jul; 373():425-436. PubMed ID: 30939425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. (Bio)dissolution of arsenopyrite coupled with multiple proportions of pyrite: Emphasis on the mobilization and existential state of arsenic.
    Tang A; Wang J; Zhang Y; Hong M; Liu Y; Yang B
    Chemosphere; 2023 Apr; 321():138128. PubMed ID: 36775027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alteration of arsenopyrite in soils under different vegetation covers.
    Mihaljevic M; Ettler V; Sebek O; Drahota P; Strnad L; Procházka R; Zeman J; Sracek O
    Sci Total Environ; 2010 Feb; 408(6):1286-94. PubMed ID: 20035968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arsenic mineralogy and mobility in the arsenic-rich historical mine waste dump.
    Filippi M; Drahota P; Machovič V; Böhmová V; Mihaljevič M
    Sci Total Environ; 2015 Dec; 536():713-728. PubMed ID: 26254072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic stability in arsenopyrite-rich cemented paste backfills: a leaching test-based assessment.
    Coussy S; Benzaazoua M; Blanc D; Moszkowicz P; Bussière B
    J Hazard Mater; 2011 Jan; 185(2-3):1467-76. PubMed ID: 21074944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processes of attenuation of dissolved arsenic downstream from historic gold mine sites, New Zealand.
    Haffert L; Craw D
    Sci Total Environ; 2008 Nov; 405(1-3):286-300. PubMed ID: 18691740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical and mineralogical studies of ore and impurities from a chromite mineral using X-ray analysis, electrochemical and microscopy techniques.
    Sánchez-Ramos S; Doménech-Carbó A; Gimeno-Adelantado JV; Peris-Vicente J
    Talanta; 2008 Feb; 74(5):1592-7. PubMed ID: 18371822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release of toxic metals and metalloids from Los Rueldos mercury mine (Asturias, Spain).
    Loredo J; Alvarez R; Ordóñez A
    Sci Total Environ; 2005 Mar; 340(1-3):247-60. PubMed ID: 15752505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A SEM and X-ray study for investigation of solidified/stabilized arsenic-iron hydroxide sludge.
    Phenrat T; Marhaba TF; Rachakornkij M
    J Hazard Mater; 2005 Feb; 118(1-3):185-95. PubMed ID: 15721543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Characteristics of the restriction profile of chromosomal DNA in strains of Acidithiobacillus ferroxidans, adapted to various oxidation substrates].
    Kondrat'eva TF; Ageeva SN; Pivovarova TA; Karavaĭko GI
    Mikrobiologiia; 2002; 71(4):514-20. PubMed ID: 12244722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acid mine drainage formation and arsenic mobility under strongly acidic conditions: Importance of soluble phases, iron oxyhydroxides/oxides and nature of oxidation layer on pyrite.
    Tabelin CB; Corpuz RD; Igarashi T; Villacorte-Tabelin M; Alorro RD; Yoo K; Raval S; Ito M; Hiroyoshi N
    J Hazard Mater; 2020 Nov; 399():122844. PubMed ID: 32534389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mineralogical characterization of the Tournemire argillite after in situ interaction with concretes.
    Tinseau E; Bartier D; Hassouta L; Devol-Brown I; Stammose D
    Waste Manag; 2006; 26(7):789-800. PubMed ID: 16600584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic release and transport during oxidative dissolution of spatially-distributed sulfide minerals.
    Battistel M; Stolze L; Muniruzzaman M; Rolle M
    J Hazard Mater; 2021 May; 409():124651. PubMed ID: 33450514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface characterization of arsenopyrite during chemical and biological oxidation.
    Deng S; Gu G; Xu B; Li L; Wu B
    Sci Total Environ; 2018 Jun; 626():349-356. PubMed ID: 29351882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Attachment of Sulfobacillus thermosulfidooxidans cells to the surface of sulfide minerals].
    Golovacheva RS
    Mikrobiologiia; 1979; 48(3):528-33. PubMed ID: 381851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.