BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 15081758)

  • 1. Growth response and phytoextraction of copper at different levels in soils by Elsholtzia splendens.
    Jiang LY; Yang XE; He ZL
    Chemosphere; 2004 Jun; 55(9):1179-87. PubMed ID: 15081758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoextraction of copper from contaminated soil by Elsholtzia splendens as affected by EDTA, citric acid, and compost.
    Yang XE; Peng HY; Jiang LY; He ZL
    Int J Phytoremediation; 2005; 7(1):69-83. PubMed ID: 15943245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens.
    Chen YX; Wang YP; Lin Q; Luo YM
    Environ Int; 2005 Aug; 31(6):861-6. PubMed ID: 16005516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils.
    Song J; Zhao FJ; Luo YM; McGrath SP; Zhang H
    Environ Pollut; 2004; 128(3):307-15. PubMed ID: 14720473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impacts of chelate-assisted phytoremediation on microbial community composition in the rhizosphere of a copper accumulator and non-accumulator.
    Chen Y; Wang Y; Wu W; Lin Q; Xue S
    Sci Total Environ; 2006 Mar; 356(1-3):247-55. PubMed ID: 15935447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants.
    Lin Q; Shen KL; Zhao HM; Li WH
    J Hazard Mater; 2008 Feb; 150(3):515-21. PubMed ID: 17574741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper uptake by four Elsholtzia ecotypes supplied with varying levels of copper in solution culture.
    Weng G; Wu L; Wang Z; Luo Y; Christie P
    Environ Int; 2005 Aug; 31(6):880-4. PubMed ID: 16005517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of [S, S]-EDDS on phytoextraction of copper and zinc by Elsholtzia splendens from metal-contaminated soil.
    Wu LH; Sun XF; Luo YM; Xing XR; Christie P
    Int J Phytoremediation; 2007; 9(3):227-41. PubMed ID: 18246770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytofiltration of copper from contaminated water: growth response, copper uptake and lignin content in Elsholtzia splendens and Elsholtzia argyi.
    Tian S; Peng H; Yang X; Lu L; Zhang L
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):85-9. PubMed ID: 18421404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chelators effect on soil Cu extractability and uptake by Elsholtzia splendens.
    Jiang LY; Yang XE
    J Zhejiang Univ Sci; 2004 Apr; 5(4):450-6. PubMed ID: 14994436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper phytoavailability and uptake by Elsholtzia splendens from contaminated soil as affected by soil amendments.
    Peng HY; Yang XE; Jiang LY; He ZL
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(4):839-56. PubMed ID: 15792303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative studies of copper tolerance and uptake by three plant species of the genus elsholtzia.
    Xia Y; Shen ZG
    Bull Environ Contam Toxicol; 2007 Jul; 79(1):53-7. PubMed ID: 17599223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents.
    Chiu KK; Ye ZH; Wong MH
    Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of dissipation mechanisms by Lolium perenne L, and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil.
    Lin Q; Wang Z; Ma S; Chen Y
    Sci Total Environ; 2006 Sep; 368(2-3):814-22. PubMed ID: 16643990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of Cu-resistant plant growth-promoting rhizobacteria and EDTA on phytoremediation efficiency of plants in a Cu-contaminated soil.
    Abbaszadeh-Dahaji P; Baniasad-Asgari A; Hamidpour M
    Environ Sci Pollut Res Int; 2019 Nov; 26(31):31822-31833. PubMed ID: 31487012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site.
    Arienzo M; Adamo P; Cozzolino V
    Sci Total Environ; 2004 Feb; 319(1-3):13-25. PubMed ID: 14967498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytotoxicity and bioaccumulation of copper and chromium using barley (Hordeum vulgare L.) in spiked artificial and natural forest soils.
    Ali NA; Ater M; Sunahara GI; Robidoux PY
    Ecotoxicol Environ Saf; 2004 Mar; 57(3):363-74. PubMed ID: 15041259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased plant growth and copper uptake of host and non-host plants by metal-resistant and plant growth-promoting endophytic bacteria.
    Sun L; Wang X; Li Y
    Int J Phytoremediation; 2016; 18(5):494-501. PubMed ID: 26587767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal extraction by Alyssum serpyllifolium ssp. lusitanicum on mine-spoil soils from Spain.
    Kidd PS; Monterroso C
    Sci Total Environ; 2005 Jan; 336(1-3):1-11. PubMed ID: 15589245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils.
    Manousaki E; Kadukova J; Papadantonakis N; Kalogerakis N
    Environ Res; 2008 Mar; 106(3):326-32. PubMed ID: 17543928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.