These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 1508187)

  • 61. Yeast two-hybrid system demonstrates that estrogen receptor dimerization is ligand-dependent in vivo.
    Wang H; Peters GA; Zeng X; Tang M; Ip W; Khan SA
    J Biol Chem; 1995 Oct; 270(40):23322-9. PubMed ID: 7559488
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Structure of the yeast TAP1 protein: dependence of transcription activation on the DNA context of the target gene.
    Aldrich TL; Di Segni G; McConaughy BL; Keen NJ; Whelen S; Hall BD
    Mol Cell Biol; 1993 Jun; 13(6):3434-44. PubMed ID: 8497260
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Functional characterization of transcriptional regulatory elements in the upstream region of the yeast GLK1 gene.
    Herrero P; Flores L; de la Cera T; Moreno F
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):319-25. PubMed ID: 10510295
    [TBL] [Abstract][Full Text] [Related]  

  • 64. PDR3, a new yeast regulatory gene, is homologous to PDR1 and controls the multidrug resistance phenomenon.
    Delaveau T; Delahodde A; Carvajal E; Subik J; Jacq C
    Mol Gen Genet; 1994 Sep; 244(5):501-11. PubMed ID: 8078477
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The DNA binding domains of the yeast Gal4 and human c-Jun transcription factors interact through the zinc-finger and bZIP motifs.
    Sollerbrant K; Akusjärvi G; Linder S; Svensson C
    Nucleic Acids Res; 1995 Feb; 23(4):588-94. PubMed ID: 7899077
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Posttranscriptional Regulation of Gcr1 Expression and Activity Is Crucial for Metabolic Adjustment in Response to Glucose Availability.
    Hossain MA; Claggett JM; Edwards SR; Shi A; Pennebaker SL; Cheng MY; Hasty J; Johnson TL
    Mol Cell; 2016 May; 62(3):346-358. PubMed ID: 27153533
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The GCR1 gene function is essential for glycogen and trehalose metabolism in Saccharomyces cerevisiae.
    Türkel S
    Folia Microbiol (Praha); 2002; 47(6):663-6. PubMed ID: 12630316
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Temperature-dependent regulation of a heterologous transcriptional activation domain fused to yeast heat shock transcription factor.
    Bonner JJ; Heyward S; Fackenthal DL
    Mol Cell Biol; 1992 Mar; 12(3):1021-30. PubMed ID: 1545786
    [TBL] [Abstract][Full Text] [Related]  

  • 69. GAL4 disrupts a repressing nucleosome during activation of GAL1 transcription in vivo.
    Axelrod JD; Reagan MS; Majors J
    Genes Dev; 1993 May; 7(5):857-69. PubMed ID: 8491382
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Sequence conservation in the Saccharomyces and Kluveromyces GAL11 transcription activators suggests functional domains.
    Mylin LM; Gerardot CJ; Hopper JE; Dickson RC
    Nucleic Acids Res; 1991 Oct; 19(19):5345-50. PubMed ID: 1923818
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Alterations in a yeast protein resembling HIV Tat-binding protein relieve requirement for an acidic activation domain in GAL4.
    Swaffield JC; Bromberg JF; Johnston SA
    Nature; 1992 Jun; 357(6380):698-700. PubMed ID: 1614516
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A Gal4-sigma 54 hybrid protein that functions as a potent activator of RNA polymerase II transcription in yeast.
    Chen BS; Sun ZW; Hampsey M
    J Biol Chem; 2001 Jun; 276(26):23881-7. PubMed ID: 11313364
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Targets of the Gal4 transcription activator in functional transcription complexes.
    Reeves WM; Hahn S
    Mol Cell Biol; 2005 Oct; 25(20):9092-102. PubMed ID: 16199885
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Involvement of the SIN4 global transcriptional regulator in the chromatin structure of Saccharomyces cerevisiae.
    Jiang YW; Stillman DJ
    Mol Cell Biol; 1992 Oct; 12(10):4503-14. PubMed ID: 1406639
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Homotypic and heterotypic protein associations control Rad51 function in double-strand break repair.
    Donovan JW; Milne GT; Weaver DT
    Genes Dev; 1994 Nov; 8(21):2552-62. PubMed ID: 7958917
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Isolation of STD1, a high-copy-number suppressor of a dominant negative mutation in the yeast TATA-binding protein.
    Ganster RW; Shen W; Schmidt MC
    Mol Cell Biol; 1993 Jun; 13(6):3650-9. PubMed ID: 8497275
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A genetic system for studying the activity of a proteolytic enzyme.
    Dasmahapatra B; DiDomenico B; Dwyer S; Ma J; Sadowski I; Schwartz J
    Proc Natl Acad Sci U S A; 1992 May; 89(9):4159-62. PubMed ID: 1570342
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A transcriptionally active form of GAL4 is phosphorylated and associated with GAL80.
    Parthun MR; Jaehning JA
    Mol Cell Biol; 1992 Nov; 12(11):4981-7. PubMed ID: 1406674
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Selective inhibition of activated but not basal transcription by the acidic activation domain of VP16: evidence for transcriptional adaptors.
    Berger SL; Cress WD; Cress A; Triezenberg SJ; Guarente L
    Cell; 1990 Jun; 61(7):1199-208. PubMed ID: 2163758
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Specialized Rap1p/Gcr1p transcriptional activation through Gcr1p DNA contacts requires Gcr2p, as does hyperphosphorylation of Gcr1p.
    Zeng X; Deminoff SJ; Santangelo GM
    Genetics; 1997 Oct; 147(2):493-505. PubMed ID: 9335588
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.