BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 15081909)

  • 1. Kinetic analysis of beta-amyloid fibril elongation.
    Cannon MJ; Williams AD; Wetzel R; Myszka DG
    Anal Biochem; 2004 May; 328(1):67-75. PubMed ID: 15081909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal Binding of Alzheimer's Amyloid-β and Its Effect on Peptide Self-Assembly.
    Abelein A
    Acc Chem Res; 2023 Oct; 56(19):2653-2663. PubMed ID: 37733746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct growth regimes of α-synuclein amyloid elongation.
    Horvath I; Welte H; Schmit JD; Kovermann M; Wittung-Stafshede P
    Biophys J; 2023 Jun; 122(12):2556-2563. PubMed ID: 37170496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence patterns and signatures: Computational and experimental discovery of amyloid-forming peptides.
    Xiao X; Robang AS; Sarma S; Le JV; Helmicki ME; Lambert MJ; Guerrero-Ferreira R; Arboleda-Echavarria J; Paravastu AK; Hall CK
    PNAS Nexus; 2022 Nov; 1(5):pgac263. PubMed ID: 36712347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Structure of Cu(II)-Bound Amyloid-β Monomer Implicated in Inhibition of Peptide Self-Assembly in Alzheimer's Disease.
    Abelein A; Ciofi-Baffoni S; Mörman C; Kumar R; Giachetti A; Piccioli M; Biverstål H
    JACS Au; 2022 Nov; 2(11):2571-2584. PubMed ID: 36465548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability matters, too - the thermodynamics of amyloid fibril formation.
    Buell AK
    Chem Sci; 2022 Sep; 13(35):10177-10192. PubMed ID: 36277637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Microscopy Advances and the Applications to Huntington's Disease Research.
    Babi M; Neuman K; Peng CY; Maiuri T; Suart CE; Truant R
    J Huntingtons Dis; 2022; 11(3):269-280. PubMed ID: 35848031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled and Selective Photo-oxidation of Amyloid-β Fibrils by Oligomeric
    Fanni AM; Okoye D; Monge FA; Hammond J; Maghsoodi F; Martin TD; Brinkley G; Phipps ML; Evans DG; Martinez JS; Whitten DG; Chi EY
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):14871-14886. PubMed ID: 35344326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic Kinetic Model Reveals How Amyloidogenic Hydrophobic Patches Facilitate the Amyloid-β Fibril Elongation.
    Xie H; Rojas A; Maisuradze GG; Khelashvili G
    ACS Chem Neurosci; 2022 Apr; 13(7):987-1001. PubMed ID: 35258946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing Protein Aggregation Using the Coarse-Grained UNRES Force Field.
    Rojas AV; Maisuradze GG; Scheraga HA; Liwo A
    Methods Mol Biol; 2022; 2340():79-104. PubMed ID: 35167071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale Models for Fibril Formation: Rare Events Methods, Microkinetic Models, and Population Balances.
    Shayesteh Zadeh A; Peters B
    Life (Basel); 2021 Jun; 11(6):. PubMed ID: 34204410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining the Landscape of the Pauling-Corey Rippled Sheet: An Orphaned Motif Finding New Homes.
    Raskatov JA; Schneider JP; Nilsson BL
    Acc Chem Res; 2021 May; 54(10):2488-2501. PubMed ID: 33901396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-Dependent Copper Ion Modulation of Amyloid-β (1-42) Aggregation In Vitro.
    Sasanian N; Bernson D; Horvath I; Wittung-Stafshede P; Esbjörner EK
    Biomolecules; 2020 Jun; 10(6):. PubMed ID: 32570820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal ion coordination delays amyloid-β peptide self-assembly by forming an aggregation-inert complex.
    Wallin C; Jarvet J; Biverstål H; Wärmländer S; Danielsson J; Gräslund A; Abelein A
    J Biol Chem; 2020 May; 295(21):7224-7234. PubMed ID: 32241918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of oligomer and amyloid fibril formation by yeast prion Sup35 observed by high-speed atomic force microscopy.
    Konno H; Watanabe-Nakayama T; Uchihashi T; Okuda M; Zhu L; Kodera N; Kikuchi Y; Ando T; Taguchi H
    Proc Natl Acad Sci U S A; 2020 Apr; 117(14):7831-7836. PubMed ID: 32213585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing transient non-native states in amyloid beta fiber elongation by NMR.
    Brender JR; Ghosh A; Kotler SA; Krishnamoorthy J; Bera S; Morris V; Sil TB; Garai K; Reif B; Bhunia A; Ramamoorthy A
    Chem Commun (Camb); 2019 Apr; 55(31):4483-4486. PubMed ID: 30917192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Out-of-Register Aβ
    Xi W; Vanderford EK; Hansmann UHE
    J Chem Theory Comput; 2018 Feb; 14(2):1099-1110. PubMed ID: 29357242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of Amyloid-β Fibril Elongation: Atomistic Details of the Transition State.
    Rodriguez RA; Chen LY; Plascencia-Villa G; Perry G
    ACS Chem Neurosci; 2018 Apr; 9(4):783-789. PubMed ID: 29239603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging Aβ(1-42) fibril elongation reveals strongly polarised growth and growth incompetent states.
    Young LJ; Kaminski Schierle GS; Kaminski CF
    Phys Chem Chem Phys; 2017 Oct; 19(41):27987-27996. PubMed ID: 29026905
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.