These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15081973)

  • 1. Development of a compact self-focusing piezoelectric generator using electrical pre-strain piezocomposite material.
    Birer A; Ghohestani M; Cathignol D
    Ultrason Sonochem; 2004 May; 11(3-4):155-60. PubMed ID: 15081973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of higher pressure pulses at the surface of piezo-composite materials using electrical pre-strain.
    Birer A; Ghohestani M; Cathignol D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Jul; 51(7):879-86. PubMed ID: 15301008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Focal size and shock wave pressure: a comparison of three different physical shock wave generators].
    Janowitz P; Stuber M; Meier T; Steiner R; Schneider HT; Ell C; Neuhaus H; Ott R; Swobodnik W; Kratzer W
    Dtsch Med Wochenschr; 1990 Dec; 115(51-52):1945-9. PubMed ID: 2261859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of very high pressure pulses at the surface of a sandwiched piezoelectric material.
    Sferruzza JP; Birer A; Cathignol D
    Ultrasonics; 2000 Nov; 38(10):965-8. PubMed ID: 11106008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Damping, amplitude, aging tests of stacked transducers for shock wave generation.
    Sferruzza JP; Birer A; Chavrier F; Cathignol D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Oct; 49(10):1453-60. PubMed ID: 12403147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic beam steering of shock waves.
    Cathignol D; Birer A; Nachef S; Chapelon JY
    Ultrasound Med Biol; 1995; 21(3):365-77. PubMed ID: 7645128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic field of a ballistic shock wave therapy device.
    Cleveland RO; Chitnis PV; McClure SR
    Ultrasound Med Biol; 2007 Aug; 33(8):1327-35. PubMed ID: 17467154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delivery by shock waves of active principle embedded in gelatin-based capsules.
    Goldenstedt C; Birer A; Cathignol D; Chesnais S; El Bahri Z; Massard C; Taverdet JL; Lafon C
    Ultrason Sonochem; 2008 Jul; 15(5):808-14. PubMed ID: 18069038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design guidelines of 1-3 piezoelectric composites dedicated to ultrasound imaging transducers, based on frequency band-gap considerations.
    Wilm M; Khelif A; Laude V; Ballandras S
    J Acoust Soc Am; 2007 Aug; 122(2):786-93. PubMed ID: 17672629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Piezoelectric diaphragm for vibration energy harvesting.
    Minazara E; Vasic D; Costa F; Poulin G
    Ultrasonics; 2006 Dec; 44 Suppl 1():e699-703. PubMed ID: 16814837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a miniaturized piezoelectric ultrasonic transducer.
    Li T; Chen Y; Ma J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Mar; 56(3):649-59. PubMed ID: 19411223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical modeling and equivalent electric circuit of a bimorph piezoelectric micromachined ultrasonic transducer.
    Sammoura F; Kim SG
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):990-8. PubMed ID: 22622984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lead zirconate titanate/poly(vinylidene fluoride-trifluoroethylene) 1-3 composites for ultrasonic transducer applications.
    Kwok KW; Chan HC; Choy CL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):626-37. PubMed ID: 18238463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A harmonic cancellation technique for an ultrasound transducer excited by a switched-mode power converter.
    Tang SC; Clement GT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):359-67. PubMed ID: 18334342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of functionally graded piezoelectric ultrasonic transducers.
    Rubio WM; Buiochi F; Adamowski JC; Silva EC
    Ultrasonics; 2009 May; 49(4-5):484-94. PubMed ID: 19230947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lens-focused transducer modeling using an extended KLM model.
    Maréchal P; Levassort F; Tran-Huu-Hue LP; Lethiecq M
    Ultrasonics; 2007 May; 46(2):155-67. PubMed ID: 17382986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between the effects of cavitation induced by two different pressure-time shock waveform pulses.
    Cathignol E; Tavakkoli J; Birer A; Arefiev A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):788-99. PubMed ID: 18244230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of tissue injury in shock-wave lithotripsy by using an acoustic diode.
    Zhu S; Dreyer T; Liebler M; Riedlinger R; Preminger GM; Zhong P
    Ultrasound Med Biol; 2004 May; 30(5):675-82. PubMed ID: 15183234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1-3 connectivity piezoelectric ceramic-polymer composite transducers made with viscous polymer processing for high frequency ultrasound.
    Abrar A; Zhang D; Su B; Button TW; Kirk KJ; Cochran S
    Ultrasonics; 2004 Apr; 42(1-9):479-84. PubMed ID: 15047332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual pulse shock wave lithotripsy: in vitro and in vivo study.
    Loske AM; Fernández F; Zendejas H; Paredes M; Castaño-Tostado E
    J Urol; 2005 Dec; 174(6):2388-92. PubMed ID: 16280853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.