BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 15082377)

  • 1. Formation of silver bromide precipitate of nanoparticles in a single microemulsion utilizing the surfactant counterion.
    Husein M; Rodil E; Vera JH
    J Colloid Interface Sci; 2004 May; 273(2):426-34. PubMed ID: 15082377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel approach for the preparation of AgBr nanoparticles from their bulk solid precursor using CTAB microemulsions.
    Husein MM; Rodil E; Vera JH
    Langmuir; 2006 Feb; 22(5):2264-72. PubMed ID: 16489816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study and modeling of iron hydroxide nanoparticle uptake by AOT (w/o) microemulsions.
    Nassar NN; Husein MM
    Langmuir; 2007 Dec; 23(26):13093-103. PubMed ID: 18004891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of microemulsion variables on copper oxide nanoparticle uptake by AOT microemulsions.
    Nassar NN; Husein MM
    J Colloid Interface Sci; 2007 Dec; 316(2):442-50. PubMed ID: 17889890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Controllable synthesis and UV-Vis spectral analysis of silver nanoparticles in AOT microemulsion].
    Zhang WZ; Qiao XL; Luo LL; Chen JG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):789-92. PubMed ID: 19455825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel cetyltrimethyl ammonium silver bromide complex and silver bromide nanoparticles obtained by the surfactant counterion.
    Liu XH; Luo XH; Lu SX; Zhang JC; Cao WL
    J Colloid Interface Sci; 2007 Mar; 307(1):94-100. PubMed ID: 17188288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel method for the preparation of silver chloride nanoparticles starting from their solid powder using microemulsions.
    Husein MM; Rodil E; Vera JH
    J Colloid Interface Sci; 2005 Aug; 288(2):457-67. PubMed ID: 15927613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silver nanoparticle formation in microemulsions acting both as template and reducing agent.
    Andersson M; Pedersen JS; Palmqvist AE
    Langmuir; 2005 Nov; 21(24):11387-96. PubMed ID: 16285815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Jun; 110(1-2):49-74. PubMed ID: 15142823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant-assisted synthesis and characterization of stable silver bromide nanoparticles in aqueous media.
    Chakraborty M; Hsiao FW; Naskar B; Chang CH; Panda AK
    Langmuir; 2012 May; 28(18):7282-90. PubMed ID: 22512457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse Micelle Formation Using a Sodium Di(n-Octyl) Phosphinate Surfactant.
    Esalah JO; Weber ME; Vera JH
    J Colloid Interface Sci; 1999 Oct; 218(1):344-346. PubMed ID: 10489312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of dye-doped silica nanoparticles prepared using a reverse microemulsion method.
    Bagwe RP; Yang C; Hilliard LR; Tan W
    Langmuir; 2004 Sep; 20(19):8336-42. PubMed ID: 15350111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation and characterization of surfactant stabilized silver nanoparticles: a kinetic study.
    Al-Thabaiti SA; Al-Nowaiser FM; Obaid AY; Al-Youbi AO; Khan Z
    Colloids Surf B Biointerfaces; 2008 Dec; 67(2):230-7. PubMed ID: 18922685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of computer simulation free-energy methods to compute the free energy of micellization as a function of micelle composition. 2. Implementation.
    Stephenson BC; Stafford KA; Beers KJ; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(6):1641-56. PubMed ID: 18198857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tetradecyltrimethylammonium bromide water-in-oil microemulsions: dependence of the minimum amount of alkanol required to produce a microemulsion with the alkanol and organic solvent topology.
    Abuin E; Lissi E; Olivares K
    J Colloid Interface Sci; 2004 Aug; 276(1):208-11. PubMed ID: 15219450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle formation by monomer-starved semibatch emulsion polymerization.
    Sajjadi S
    Langmuir; 2007 Jan; 23(3):1018-24. PubMed ID: 17241008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloidal stability of hydrophobic nanoparticles in ionic surfactant solutions: definition of the critical dispersion concentration.
    Dederichs T; Möller M; Weichold O
    Langmuir; 2009 Feb; 25(4):2007-12. PubMed ID: 19146423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides.
    Djekic L; Primorac M
    Int J Pharm; 2008 Mar; 352(1-2):231-9. PubMed ID: 18068919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in gamma-irradiated silver nitrate solution.
    Shin HS; Yang HJ; Kim SB; Lee MS
    J Colloid Interface Sci; 2004 Jun; 274(1):89-94. PubMed ID: 15120281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR and SANS studies of aggregation and microemulsion formation by phosphorus fluorosurfactants in liquid and supercritical carbon dioxide.
    Xu B; Lynn GW; Guo J; Melnichenko YB; Wignall GD; McClain JB; Desimone JM; Johnson CS
    J Phys Chem B; 2005 May; 109(20):10261-9. PubMed ID: 16852243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.