BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

576 related articles for article (PubMed ID: 15083142)

  • 1. Uncertainties in dose coefficients from ingestion of 131I, 137Cs, and 90Sr.
    Apostoaei AI; Miller LF
    Health Phys; 2004 May; 86(5):460-82. PubMed ID: 15083142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of human biokinetics of strontium on internal ingestion dose of 90Sr and absorbed dose of 89Sr to organs and metastases.
    Li WB; Höllriegl V; Roth P; Oeh U
    Radiat Environ Biophys; 2008 Apr; 47(2):225-39. PubMed ID: 18204850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age-specific uncertainty of the 131I ingestion dose conversion factor.
    Harvey RP; Hamby DM; Benke RR
    Health Phys; 2003 Mar; 84(3):334-43. PubMed ID: 12645768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Testing prediction capabilities of an 131I terrestrial transport model by using measurements collected at the Hanford nuclear facility.
    Apostoaei AI
    Health Phys; 2005 May; 88(5):439-58. PubMed ID: 15824593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the reliability of dose coefficients for ingestion and inhalation of 226Ra and 90Sr by members of the public.
    Puncher M
    Radiat Prot Dosimetry; 2014 Jan; 158(1):8-21. PubMed ID: 23896416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Internal exposure rate conversion coefficients and absorbed fractions of mouse for 137Cs, 134Cs and 90Sr contamination in body.
    Endo S; Matsutani Y; Kajimoto T; Tanaka K; Suzuki M
    J Radiat Res; 2020 Jul; 61(4):535-545. PubMed ID: 32500146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncertainty of the thyroid dose conversion factor for inhalation intakes of 131I and its parametric uncertainty.
    Harvey RP; Hamby DM; Palmer TS
    Radiat Prot Dosimetry; 2006; 118(3):296-306. PubMed ID: 16410291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the current internal dose due to 137Cs and 90Sr for people living within the Semipalatinsk Test Site, Kazakhstan.
    Semiochkina N; Voigt G; Mukusheva M; Bruk G; Travnikova I; Strand P
    Health Phys; 2004 Feb; 86(2):187-92. PubMed ID: 14744053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retrospective evaluation of 131I deposition density and thyroid dose in Poland after the Chernobyl accident.
    Pietrzak-Flis Z; Krajewski P; Radwan I; Muramatsu Y
    Health Phys; 2003 Jun; 84(6):698-708. PubMed ID: 12822579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the reliability of dose coefficients for exposure to radioiodine by members of the public, accounting for dosimetric and risk model uncertainties.
    Puncher M; Zhang W; Harrison JD; Wakeford R
    J Radiol Prot; 2017 Jun; 37(2):506-526. PubMed ID: 28586312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstruction and forecast of doses due to ingestion of 137Cs and 90Sr after the Chernobyl accident.
    Kravets AP; Pavlenko YA
    Radiat Environ Biophys; 2008 Apr; 47(2):213-23. PubMed ID: 18273632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of thyroid radiation doses for the hanford thyroid disease study: results and implications for statistical power of the epidemiological analyses.
    Kopecky KJ; Davis S; Hamilton TE; Saporito MS; Onstad LE
    Health Phys; 2004 Jul; 87(1):15-32. PubMed ID: 15194919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of radionuclides distributed in the whole body on the thyroid dose estimates obtained from direct thyroid measurements made in Belarus after the Chernobyl accident.
    Ulanovsky A; Drozdovitch V; Bouville A
    Radiat Prot Dosimetry; 2004; 112(3):405-18. PubMed ID: 15494363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of biokinetic models of Cs and I using their daily dietary intakes and organ contents in an adult Indian population.
    Jaiswal DD; Nair S; Dang HS; Sharma RC
    Radiat Prot Dosimetry; 2003; 105(1-4):235-8. PubMed ID: 14526962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity analysis of ECOSYS-87: an emphasis on the ingestion pathway as a function of radionuclide and type of deposition.
    Hinton TG
    Health Phys; 1994 May; 66(5):513-31. PubMed ID: 8175358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Normal organ radiation dosimetry and associated uncertainties in nuclear medicine, with emphasis on iodine-131.
    Brill AB; Stabin M; Bouville A; Ron E
    Radiat Res; 2006 Jul; 166(1 Pt 2):128-40. PubMed ID: 16808602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact on 141Ce, 144Ce, 95Zr, and 90Sr beta emitter dose coefficients of photon and electron SAFs calculated with ICRP/ICRU reference adult voxel computational phantoms.
    Li WB; Zankl M; Schlattl H; Petoussi-Henss N; Eckerman KF; Bolch WE; Oeh U; Hoeschen C
    Health Phys; 2010 Oct; 99(4):503-10. PubMed ID: 20838091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstruction of radiation doses in a case-control study of thyroid cancer following the Chernobyl accident.
    Drozdovitch V; Khrouch V; Maceika E; Zvonova I; Vlasov O; Bratilova A; Gavrilin Y; Goulko G; Hoshi M; Kesminiene A; Shinkarev S; Tenet V; Cardis E; Bouville A
    Health Phys; 2010 Jul; 99(1):1-16. PubMed ID: 20539120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncertainties in committed equivalent doses to the thyroid after ingestion or inhalation of different chemical forms of 125-129-131I.
    Fritsch P
    Radiat Prot Dosimetry; 2007; 127(1-4):548-52. PubMed ID: 18227075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dietary intakes of seven elements of importance in radiological protection by asian population: comparison with ICRP data.
    Iyengar GV; Kawamura H; Dang HS; Parr RM; Wang J; Akhter P; Cho SY; Natera E; Miah FK; Dojosubroto J; Nguyen MS
    Health Phys; 2004 Jun; 86(6):557-64. PubMed ID: 15167119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.