BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 15083505)

  • 1. Metabolic pathway analysis of yeast strengthens the bridge between transcriptomics and metabolic networks.
    Cakir T; Kirdar B; Ulgen KO
    Biotechnol Bioeng; 2004 May; 86(3):251-60. PubMed ID: 15083505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of carbon source perturbations on transcriptional regulation of metabolic fluxes in Saccharomyces cerevisiae.
    Cakir T; Kirdar B; Onsan ZI; Ulgen KO; Nielsen J
    BMC Syst Biol; 2007 Mar; 1():18. PubMed ID: 17408508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous modeling of metabolic networks with gene regulation in yeast and in vivo determination of rate parameters.
    Moisset P; Vaisman D; Cintolesi A; Urrutia J; Rapaport I; Andrews BA; Asenjo JA
    Biotechnol Bioeng; 2012 Sep; 109(9):2325-39. PubMed ID: 22447363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Genetic Requirements for Pentose Fermentation in Budding Yeast.
    Mittelman K; Barkai N
    G3 (Bethesda); 2017 Jun; 7(6):1743-1752. PubMed ID: 28404660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic flux distributions in recombinant Saccharomyces cerevisiae during foreign protein production.
    Jin S; Ye K; Shimizu K
    J Biotechnol; 1997 May; 54(3):161-74. PubMed ID: 9208486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network.
    Ostergaard S; Olsson L; Johnston M; Nielsen J
    Nat Biotechnol; 2000 Dec; 18(12):1283-6. PubMed ID: 11101808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering.
    Lee KS; Hong ME; Jung SC; Ha SJ; Yu BJ; Koo HM; Park SM; Seo JH; Kweon DH; Park JC; Jin YS
    Biotechnol Bioeng; 2011 Mar; 108(3):621-31. PubMed ID: 21246509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-consumption of sugars or ethanol and glucose in a Saccharomyces cerevisiae strain deleted in the HXK2 gene.
    Raamsdonk LM; Diderich JA; Kuiper A; van Gaalen M; Kruckeberg AL; Berden JA; Van Dam K
    Yeast; 2001 Aug; 18(11):1023-33. PubMed ID: 11481673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study.
    Daran-Lapujade P; Jansen ML; Daran JM; van Gulik W; de Winde JH; Pronk JT
    J Biol Chem; 2004 Mar; 279(10):9125-38. PubMed ID: 14630934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A.
    Jouhten P; Rintala E; Huuskonen A; Tamminen A; Toivari M; Wiebe M; Ruohonen L; Penttilä M; Maaheimo H
    BMC Syst Biol; 2008 Jul; 2():60. PubMed ID: 18613954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of GAL6, GAL80, and MIG1 on glucose control of the GAL system in Saccharomyces cerevisiae.
    Ostergaard S; Walløe KO; Gomes SG; Olsson L; Nielsen J
    FEMS Yeast Res; 2001 Apr; 1(1):47-55. PubMed ID: 12702462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast.
    Blank LM; Kuepfer L; Sauer U
    Genome Biol; 2005; 6(6):R49. PubMed ID: 15960801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic analysis of the synthesis of high levels of intracellular human SOD in Saccharomyces cerevisiae rhSOD 2060 411 SGA122.
    Gonzalez R; Andrews BA; Molitor J; Asenjo JA
    Biotechnol Bioeng; 2003 Apr; 82(2):152-69. PubMed ID: 12584757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid and efficient galactose fermentation by engineered Saccharomyces cerevisiae.
    Quarterman J; Skerker JM; Feng X; Liu IY; Zhao H; Arkin AP; Jin YS
    J Biotechnol; 2016 Jul; 229():13-21. PubMed ID: 27140870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of nutrient starvation on the cellular composition and metabolic capacity of Saccharomyces cerevisiae.
    Albers E; Larsson C; Andlid T; Walsh MC; Gustafsson L
    Appl Environ Microbiol; 2007 Aug; 73(15):4839-48. PubMed ID: 17545328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic flux screening of Saccharomyces cerevisiae single knockout strains on glucose and galactose supports elucidation of gene function.
    Velagapudi VR; Wittmann C; Schneider K; Heinzle E
    J Biotechnol; 2007 Dec; 132(4):395-404. PubMed ID: 17919760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Derepression of galactose metabolism in melibiase producing bakers' and distillers' yeast.
    Rønnow B; Olsson L; Nielsen J; Mikkelsen JD
    J Biotechnol; 1999 Jun; 72(1-2):213-28. PubMed ID: 12680392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon Catabolite Repression in Yeast is Not Limited to Glucose.
    Simpson-Lavy K; Kupiec M
    Sci Rep; 2019 Apr; 9(1):6491. PubMed ID: 31019232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redirection of the respiro-fermentative flux distribution in Saccharomyces cerevisiae by overexpression of the transcription factor Hap4p.
    Blom J; De Mattos MJ; Grivell LA
    Appl Environ Microbiol; 2000 May; 66(5):1970-3. PubMed ID: 10788368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic pathway analysis of a recombinant yeast for rational strain development.
    Carlson R; Fell D; Srienc F
    Biotechnol Bioeng; 2002 Jul; 79(2):121-34. PubMed ID: 12115428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.