These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 15084)

  • 21. Brain catecholamines in spontaneously hypertensive and DOCA-salt hypertensive rats.
    Fujino K
    Acta Med Okayama; 1984 Aug; 38(4):325-40. PubMed ID: 6149670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hypothalamic catecholamine metabolism is increased by acute water imbalance.
    Klemfuss H; Seiden LS
    Pharmacol Biochem Behav; 1986 Feb; 24(2):229-35. PubMed ID: 3952113
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [The effect of nalorphine on the course and outcome of posthemorrhagic hypotension and the regional metabolism of biogenic amines in the rat brain].
    Bacić F; Savić J; Pantelić D; Mrsulja BB
    Vojnosanit Pregl; 1987; 44(1):3-9. PubMed ID: 3577025
    [No Abstract]   [Full Text] [Related]  

  • 24. Effects of schedules of reinforcement on brain catecholamine metabolism in the rat.
    Albert LH; Emmett-Oglesby M; Seiden LS
    Pharmacol Biochem Behav; 1977 May; 6(5):481-6. PubMed ID: 896886
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alteration of rat brain catecholamine metabolism during exposure to hypobaric hypoxia.
    Cymerman A; Robinson SM; McCullough D
    Can J Physiol Pharmacol; 1972 Apr; 50(4):321-7. PubMed ID: 4402610
    [No Abstract]   [Full Text] [Related]  

  • 26. Clonidine reverses the increased norepinephrine turnover during morphine withdrawal in rats.
    Laverty R; Roth RH
    Brain Res; 1980 Jan; 182(2):482-5. PubMed ID: 7188872
    [No Abstract]   [Full Text] [Related]  

  • 27. [Effect of chronic oral administration of clonidine on the endogenous catecholamine metabolism in spontaneously hypertensive rats (author's transl)].
    Saito H; Koike Y; Yomaida I; Otani T; Togashi H
    Hokkaido Igaku Zasshi; 1977 Jul; 52(4):365-72. PubMed ID: 562829
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential effect of changing central and peripheral catecholamine levels in cysteamine-induced duodenal ulcer in the rat.
    Horner HC; Szabo S
    Life Sci; 1981 Dec; 29(23):2437-43. PubMed ID: 7321769
    [No Abstract]   [Full Text] [Related]  

  • 29. Differential effects on mouse brain catecholamine turnover of chlorpromazine, trifluoperazine and closely-related non-tranquillizing analogues.
    Green AL
    J Pharm Pharmacol; 1973 Mar; 25(3):267-9. PubMed ID: 4146333
    [No Abstract]   [Full Text] [Related]  

  • 30. Biosynthesis of catecholamines, uptake of 3H-noradrenaline, and reactivity of cardiovascular system of the rat after chronic and acute treatment with a new antidepressant agent, IPF C-45.
    Filczewski M; Szymańska-Kosmala M; Oledzka K
    Pol J Pharmacol Pharm; 1977; 29(1):23-9. PubMed ID: 854479
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The interaction between clonidine and desmethylimipramine: effects on blood pressure and central catecholamine metabolism [proceedings].
    Draper AJ; Grimes D; Redfern PH
    J Pharm Pharmacol; 1976 Dec; 28 Suppl():34P. PubMed ID: 12309
    [No Abstract]   [Full Text] [Related]  

  • 32. Effect of ethanol dependence and withdrawal on the catecholamines in rat brain and heart.
    Ahtee L; Svartström-Fraser M
    Acta Pharmacol Toxicol (Copenh); 1975 Apr; 36(4):289-98. PubMed ID: 1173314
    [No Abstract]   [Full Text] [Related]  

  • 33. Environmental stress as a factor in the response of rat brain catecholamine metabolism to delta8-tetrahydrocannabinol.
    MacLean KI; Littleton JM
    Eur J Pharmacol; 1977 Jan; 41(2):171-82. PubMed ID: 832673
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The ability of the alpha 2-adrenergic agonist clonidine to suppress central noradrenergic hyperactivity secondary to hemodynamic or environmental stimuli.
    Quintin L; Ghignone M; Pujol JF
    J Cardiovasc Pharmacol; 1987; 10 Suppl 12():S128-34. PubMed ID: 2455164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbamazepine decreases catecholamine turnover in the rat brain.
    Waldmeier PC; Baumann PA; Fehr B; De Herdt P; Maitre L
    J Pharmacol Exp Ther; 1984 Oct; 231(1):166-72. PubMed ID: 6491972
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biochemical and behavioural effects of tyrosine hydroxylase inhibition.
    Hanson LC
    Psychopharmacologia; 1967; 11(1):8-17. PubMed ID: 5596865
    [No Abstract]   [Full Text] [Related]  

  • 37. Application of steady-state kinetics to the study of catecholamine turnover after monoamine oxidase inhibition or reserpine administration.
    Neff NH; Costa E
    J Pharmacol Exp Ther; 1968 Mar; 160(1):40-7. PubMed ID: 5639109
    [No Abstract]   [Full Text] [Related]  

  • 38. Effect of acute or chronic pentobarbital administration on the steady state levels and the turnover rates of catecholamines in discrete brain areas of mice.
    Nabeshima T; Fujimori K; Ho IK
    Prog Neuropsychopharmacol; 1981; 5(2):121-8. PubMed ID: 7267838
    [No Abstract]   [Full Text] [Related]  

  • 39. Neonatal 6-hydroxydopamine treatment: noradrenaline levels and in vitro 3H-catecholamine synthesis in discrete brain regions of adult rats.
    Versteeg DH; van Ree JM; Provoost AP; de Jong W
    Life Sci; 1974 Dec; 15(12):2127-34. PubMed ID: 4621009
    [No Abstract]   [Full Text] [Related]  

  • 40. Brain catecholamines during development of DOCA-salt hypertension in rats.
    Saavedra JM
    Brain Res; 1979 Dec; 179(1):121-7. PubMed ID: 509225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.