These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 15084326)
1. Effect of silver nano particles on the fluorescence quantum yield of Rhodamine 6G determined using dual beam thermal lens method. Santhi A; Umadevi M; Ramakrishnan V; Radhakrishnan P; Nampoori VP Spectrochim Acta A Mol Biomol Spectrosc; 2004 Apr; 60(5):1077-83. PubMed ID: 15084326 [TBL] [Abstract][Full Text] [Related]
2. Variations in fluorescence quantum yield of basic fuchsin with silver nanoparticles prepared by femtosecond laser ablation. Pathrose B; Sahira H; Nampoori VP; Radhakrishnan P; Mujeeb A Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():522-6. PubMed ID: 24691366 [TBL] [Abstract][Full Text] [Related]
3. Spectroscopic studies of rhodamine 6G dispersed in polymethylcyanoacrylate. Saini GS; Kaur S; Tripathi SK; Mahajan CG; Thanga HH; Verma AL Spectrochim Acta A Mol Biomol Spectrosc; 2005 Feb; 61(4):653-8. PubMed ID: 15649797 [TBL] [Abstract][Full Text] [Related]
4. Absorption and fluorescence spectroscopy of rhodamine 6G in titanium dioxide nanocomposites. Vogel R; Meredith P; Harvey MD; Rubinsztein-Dunlop H Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jan; 60(1-2):245-9. PubMed ID: 14670484 [TBL] [Abstract][Full Text] [Related]
5. [The charge transferring between silver nanoparticles and R6G]. Guo L; Zhang X; Du Z; Huang Y; Mo Y Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Feb; 21(1):16-8. PubMed ID: 12953567 [TBL] [Abstract][Full Text] [Related]
6. [Resonance-scattering spectral determination of H2O2 using rhodamine 6G association particles]. Li ZZ; Jiang ZL; Yang G; Lu D; Liu SP Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Aug; 25(8):1286-8. PubMed ID: 16329502 [TBL] [Abstract][Full Text] [Related]
7. Solid state dye lasers: rhodamines in silica-zirconia materials. Schultheiss S; Yariv E; Reisfeld R; Breuer HD Photochem Photobiol Sci; 2002 May; 1(5):320-3. PubMed ID: 12653469 [TBL] [Abstract][Full Text] [Related]
8. Orientational and dynamical heterogeneity of rhodamine 6G terminally attached to a DNA helix revealed by NMR and single-molecule fluorescence spectroscopy. Neubauer H; Gaiko N; Berger S; Schaffer J; Eggeling C; Tuma J; Verdier L; Seidel CA; Griesinger C; Volkmer A J Am Chem Soc; 2007 Oct; 129(42):12746-55. PubMed ID: 17900110 [TBL] [Abstract][Full Text] [Related]
9. Surface-enhanced fluorescence of rhodamine 6G on the assembled silver nanostructures. Liu G; Zheng H; Liu M; Zhang Z; Dong J; Yan X; Li X J Nanosci Nanotechnol; 2011 Nov; 11(11):9523-7. PubMed ID: 22413241 [TBL] [Abstract][Full Text] [Related]
10. [Fluorescence enhancement and laser behavior of Rhodamine 6G in micell]. Zhong X; Yang J; Ha Y; Meng J; Li Y Guang Pu Xue Yu Guang Pu Fen Xi; 2001 Aug; 21(4):450-3. PubMed ID: 12945258 [TBL] [Abstract][Full Text] [Related]
11. Determination of the absolute fluorescence quantum yield of rhodamine 6G with optical and photoacoustic methods--providing the basis for fluorescence quantum yield standards. Würth C; González MG; Niessner R; Panne U; Haisch C; Genger UR Talanta; 2012 Feb; 90():30-7. PubMed ID: 22340112 [TBL] [Abstract][Full Text] [Related]
12. Thermal lens technique to study the effect of pH on electronic energy transfer in organic dye mixtures. Kurian A; George SD; Bindhu CV; Nampoori VP; Vallabhan CP Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):678-82. PubMed ID: 17045520 [TBL] [Abstract][Full Text] [Related]
13. Controlled layer-by-layer formation of ultrathin TiO2 on silver island films via a surface sol-gel method for surface-enhanced Raman scattering measurement. Bao L; Mahurin SM; Dai S Anal Chem; 2004 Aug; 76(15):4531-6. PubMed ID: 15283598 [TBL] [Abstract][Full Text] [Related]
14. Effect of the excitation source on the quantum-yield measurements of rhodamine B laser dye studied using thermal-lens technique. Bindhu CV; Harilal SS Anal Sci; 2001 Jan; 17(1):141-4. PubMed ID: 11993651 [TBL] [Abstract][Full Text] [Related]
15. [Fluorescence Resonance Energy Transfer Detection of Cobalt Ions by Silver Triangular Nanoplates and Rhodamine 6G]. Zhang XQ; Peng J; Ling J; Liu CJ; Cao QE; Ding ZT Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Apr; 35(4):951-5. PubMed ID: 26197581 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence enhancement of ruthenium complex on silver using different chain length carboxylic acid terminated thiols: distance and metal concentration study. Chaudhari NK; Kim M; Kim HK; Choi SH; Yoon KR; Lee KS; Yu JS J Nanosci Nanotechnol; 2008 Sep; 8(9):4747-51. PubMed ID: 19049100 [TBL] [Abstract][Full Text] [Related]
17. Eclipsing thermal lens spectroscopy for fluorescence quantum yield measurement. Estupiñán-López C; Tolentino Dominguez C; de Araujo RE Opt Express; 2013 Jul; 21(15):18592-601. PubMed ID: 23938731 [TBL] [Abstract][Full Text] [Related]
18. The controlled pulsed laser deposition of Ag nanoparticle arrays for surface enhanced Raman scattering. D'Andrea C; Neri F; Ossi PM; Santo N; Trusso S Nanotechnology; 2009 Jun; 20(24):245606. PubMed ID: 19471080 [TBL] [Abstract][Full Text] [Related]
19. The Fluorescence Properties of Three Rhodamine Dye Analogues: Acridine Red, Pyronin Y and Pyronin B. Zhang XF; Zhang J; Lu X J Fluoresc; 2015 Jul; 25(4):1151-8. PubMed ID: 26162989 [TBL] [Abstract][Full Text] [Related]
20. Fluorescence spectroscopy of Rhodamine 6G: concentration and solvent effects. Zehentbauer FM; Moretto C; Stephen R; Thevar T; Gilchrist JR; Pokrajac D; Richard KL; Kiefer J Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():147-51. PubMed ID: 24239710 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]