BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 15084484)

  • 1. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement.
    Mukai C; Okuno M
    Biol Reprod; 2004 Aug; 71(2):540-7. PubMed ID: 15084484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycolysis plays an important role in energy transfer from the base to the distal end of the flagellum in mouse sperm.
    Takei GL; Miyashiro D; Mukai C; Okuno M
    J Exp Biol; 2014 Jun; 217(Pt 11):1876-86. PubMed ID: 24577453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of osmolality on inner mitochondrial transmembrane potential and ATP content in spermatozoa recovered from the testes of striped bass (Morone saxatilis).
    Guthrie HD; Woods LC; Long JA; Welch GR
    Theriogenology; 2008 May; 69(8):1007-12. PubMed ID: 18359505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of glucose in supporting motility and capacitation in human spermatozoa.
    Williams AC; Ford WC
    J Androl; 2001; 22(4):680-95. PubMed ID: 11451366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interdoublet sliding in bovine spermatozoa: its relationship to flagellar motility and the action of inhibitory agents.
    Bird Z; Hard R; Kanous KS; Lindemann CB
    J Struct Biol; 1996; 116(3):418-28. PubMed ID: 8813000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible intracellular ATP changes in intact rat spermatozoa and effects on flagellar sperm movement.
    Jeulin C; Soufir JC
    Cell Motil Cytoskeleton; 1992; 21(3):210-22. PubMed ID: 1581974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactive oxygen species and human spermatozoa. II. Depletion of adenosine triphosphate plays an important role in the inhibition of sperm motility.
    de Lamirande E; Gagnon C
    J Androl; 1992; 13(5):379-86. PubMed ID: 1331007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial ATP is required for the maintenance of membrane integrity in stallion spermatozoa, whereas motility requires both glycolysis and oxidative phosphorylation.
    Davila MP; Muñoz PM; Bolaños JM; Stout TA; Gadella BM; Tapia JA; da Silva CB; Ferrusola CO; Peña FJ
    Reproduction; 2016 Dec; 152(6):683-694. PubMed ID: 27798283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycolysis and sperm motility: does a spoonful of sugar help the flagellum go round?
    Ford WC
    Hum Reprod Update; 2006; 12(3):269-74. PubMed ID: 16407453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. cAMP/ATP relationship in the activation of trout sperm motility: their interaction in membrane-deprived models and in live spermatozoa.
    Cosson MP; Cosson J; André F; Billard R
    Cell Motil Cytoskeleton; 1995; 31(2):159-76. PubMed ID: 7553909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of mitochondrial activity in mediating ELF-EMF stimulatory effect on human sperm motility.
    Iorio R; Delle Monache S; Bennato F; Di Bartolomeo C; Scrimaglio R; Cinque B; Colonna RC
    Bioelectromagnetics; 2011 Jan; 32(1):15-27. PubMed ID: 20690107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of sugars and amino acids in bacteria. XV. Comparative studies on the effects of various energy poisons on the oxidative and phosphorylating activities and energy coupling reactions for the active transport systems for amino acids in E. coli.
    Anraku Y; Kin E; Tanaka Y
    J Biochem; 1975 Jul; 78(1):165-79. PubMed ID: 1104599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative phosphorylation versus glycolysis: what fuel do spermatozoa use?
    du Plessis SS; Agarwal A; Mohanty G; van der Linde M
    Asian J Androl; 2015; 17(2):230-5. PubMed ID: 25475660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of flagellar motility of fowl spermatozoa by L-carnitine: its relationship with respiration and phosphorylation of axonemal proteins.
    Ashizawa K; Kamiya T; Tamura I; Tsuzuki Y
    Mol Reprod Dev; 1994 Jul; 38(3):318-25. PubMed ID: 7917283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleotide content, oxidative phosphorylation, morphology, and fertilizing capacity of turbot (Psetta maxima) spermatozoa during the motility period.
    Dreanno C; Cosson J; Suquet M; Seguin F; Dorange G; Billard R
    Mol Reprod Dev; 1999 Jun; 53(2):230-43. PubMed ID: 10331461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy metabolism and sperm function.
    Miki K
    Soc Reprod Fertil Suppl; 2007; 65():309-25. PubMed ID: 17644971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility.
    Ho HC; Suarez SS
    Biol Reprod; 2003 May; 68(5):1590-6. PubMed ID: 12606347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition by ATP and activation by ADP in the regulation of flagellar movement in sea urchin sperm.
    Yoshimura A; Nakano I; Shingyoji C
    Cell Motil Cytoskeleton; 2007 Oct; 64(10):777-93. PubMed ID: 17685440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of sperm flagellar motility activation and chemotaxis caused by egg-derived substance(s) in sea cucumber.
    Morita M; Kitamura M; Nakajima A; Sri Susilo E; Takemura A; Okuno M
    Cell Motil Cytoskeleton; 2009 Apr; 66(4):202-14. PubMed ID: 19235200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of Mitochondrial Activity and OXPHOS in ATP Synthesis During the Motility Phase of Spermatozoa in the Pacific Oyster, Crassostrea gigas.
    Boulais M; Soudant P; Le Goïc N; Quéré C; Boudry P; Suquet M
    Biol Reprod; 2015 Nov; 93(5):118. PubMed ID: 26423125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.