BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 15084665)

  • 1. Sequential release of GABA by exocytosis and reversed uptake leads to neuronal swelling in simulated ischemia of hippocampal slices.
    Allen NJ; Rossi DJ; Attwell D
    J Neurosci; 2004 Apr; 24(15):3837-49. PubMed ID: 15084665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carrier-mediated GABA release activates GABA receptors on hippocampal neurons.
    Gaspary HL; Wang W; Richerson GB
    J Neurophysiol; 1998 Jul; 80(1):270-81. PubMed ID: 9658049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABA transaminase inhibition induces spontaneous and enhances depolarization-evoked GABA efflux via reversal of the GABA transporter.
    Wu Y; Wang W; Richerson GB
    J Neurosci; 2001 Apr; 21(8):2630-9. PubMed ID: 11306616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vesicular GABA release delays the onset of the Purkinje cell terminal depolarization without affecting tissue swelling in cerebellar slices during simulated ischemia.
    Brady JD; Mohr C; Rossi DJ
    Neuroscience; 2010 Jun; 168(1):108-17. PubMed ID: 20226232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamate release in severe brain ischaemia is mainly by reversed uptake.
    Rossi DJ; Oshima T; Attwell D
    Nature; 2000 Jan; 403(6767):316-21. PubMed ID: 10659851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relation of exocytotic release of gamma-aminobutyric acid to Ca2+ entry through Ca2+ channels or by reversal of the Na+/Ca2+ exchanger in synaptosomes.
    Duarte CB; Ferreira IL; Carvalho AP; Carvalho CM
    Pflugers Arch; 1993 May; 423(3-4):314-23. PubMed ID: 8391683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic regulation of synaptic GABA release by the glutamate-glutamine cycle in hippocampal area CA1.
    Liang SL; Carlson GC; Coulter DA
    J Neurosci; 2006 Aug; 26(33):8537-48. PubMed ID: 16914680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GABAb receptors regulate chick retinal calcium waves.
    Catsicas M; Mobbs P
    J Neurosci; 2001 Feb; 21(3):897-910. PubMed ID: 11157076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blockade of the membranal GABA transporter potentiates GABAergic responses evoked in pyramidal cells by mossy fiber activation after seizures.
    Vivar C; Gutiérrez R
    Hippocampus; 2005; 15(3):281-4. PubMed ID: 15668946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subtype-specific GABA transporter antagonists synergistically modulate phasic and tonic GABAA conductances in rat neocortex.
    Keros S; Hablitz JJ
    J Neurophysiol; 2005 Sep; 94(3):2073-85. PubMed ID: 15987761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A plateau potential mediated by the activation of extrasynaptic NMDA receptors in rat hippocampal CA1 pyramidal neurons.
    Suzuki T; Kodama S; Hoshino C; Izumi T; Miyakawa H
    Eur J Neurosci; 2008 Aug; 28(3):521-34. PubMed ID: 18702724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistically interacting dopamine D1 and NMDA receptors mediate nonvesicular transporter-dependent GABA release from rat striatal medium spiny neurons.
    Schoffelmeer AN; Vanderschuren LJ; De Vries TJ; Hogenboom F; Wardeh G; Mulder AH
    J Neurosci; 2000 May; 20(9):3496-503. PubMed ID: 10777812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-lasting facilitation of 4-amino-n-[2,3-(3)H]butyric acid ([(3)H]GABA) release from rat hippocampal slices by nicotinic receptor activation.
    Köfalvi A; Sperlágh B; Zelles T; Vizi ES
    J Pharmacol Exp Ther; 2000 Nov; 295(2):453-62. PubMed ID: 11046076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paracrine intercellular communication by a Ca2+- and SNARE-independent release of GABA and glutamate prior to synapse formation.
    Demarque M; Represa A; Becq H; Khalilov I; Ben-Ari Y; Aniksztejn L
    Neuron; 2002 Dec; 36(6):1051-61. PubMed ID: 12495621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow desensitization regulates the availability of synaptic GABA(A) receptors.
    Overstreet LS; Jones MV; Westbrook GL
    J Neurosci; 2000 Nov; 20(21):7914-21. PubMed ID: 11050111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GAT-1 and reversible GABA transport in Bergmann glia in slices.
    Barakat L; Bordey A
    J Neurophysiol; 2002 Sep; 88(3):1407-19. PubMed ID: 12205162
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential expression of GABA and glutamate-receptor subunits and enzymes involved in GABA metabolism between electrophysiologically identified hippocampal CA1 pyramidal cells and interneurons.
    Telfeian AE; Tseng HC; Baybis M; Crino PB; Dichter MA
    Epilepsia; 2003 Feb; 44(2):143-9. PubMed ID: 12558566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vigabatrin induces tonic inhibition via GABA transporter reversal without increasing vesicular GABA release.
    Wu Y; Wang W; Richerson GB
    J Neurophysiol; 2003 Apr; 89(4):2021-34. PubMed ID: 12612025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular regulation of glutamate and GABA transporter proteins by valproic acid in rat hippocampus during epileptogenesis.
    Ueda Y; Willmore LJ
    Exp Brain Res; 2000 Aug; 133(3):334-9. PubMed ID: 10958523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in intracellular chloride after oxygen-glucose deprivation of the adult hippocampal slice: effect of diazepam.
    Galeffi F; Sah R; Pond BB; George A; Schwartz-Bloom RD
    J Neurosci; 2004 May; 24(18):4478-88. PubMed ID: 15128862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.