BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 15085126)

  • 1. Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions.
    Shibata N; Pennycook SJ; Gosnell TR; Painter GS; Shelton WA; Becher PF
    Nature; 2004 Apr; 428(6984):730-3. PubMed ID: 15085126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interface structure and atomic bonding characteristics in silicon nitride ceramics.
    Ziegler A; Idrobo JC; Cinibulk MK; Kisielowski C; Browning ND; Ritchie RO
    Science; 2004 Dec; 306(5702):1768-70. PubMed ID: 15576617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grain boundary atomic structures and light-element visualization in ceramics: combination of Cs-corrected scanning transmission electron microscopy and first-principles calculations.
    Ikuhara Y
    J Electron Microsc (Tokyo); 2011; 60 Suppl 1():S173-88. PubMed ID: 21844588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of light elements in silicon nitride by aberration-corrected scanning transmission electron microscopy.
    Idrobo JC; Walkosz W; Klie RF; Oğüt S
    Ultramicroscopy; 2012 Dec; 123():74-9. PubMed ID: 22726263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening.
    Shen Z; Zhao Z; Peng H; Nygren M
    Nature; 2002 May; 417(6886):266-9. PubMed ID: 12015597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructural prototyping of ceramics by kinetic engineering: applications of spark plasma sintering.
    Shen Z; Nygren M
    Chem Rec; 2005; 5(3):173-84. PubMed ID: 15889404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure, toughness and flexural strength of self-reinforced silicon nitride ceramics doped with yttrium oxide and ytterbium oxide.
    Zheng YS; Knowles KM; Vieira JM; Lopes AB; Oliveira FJ
    J Microsc; 2001 Feb; 201(2):238-249. PubMed ID: 11207926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A crossover in the mechanical response of nanocrystalline ceramics.
    Szlufarska I; Nakano A; Vashishta P
    Science; 2005 Aug; 309(5736):911-4. PubMed ID: 16081730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimillion atom simulations of dynamics of oxidation of an aluminum nanoparticle and nanoindentation on ceramics.
    Vashishta P; Kalia RK; Nakano A
    J Phys Chem B; 2006 Mar; 110(8):3727-33. PubMed ID: 16494430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sintering dense nanocrystalline ceramics without final-stage grain growth.
    Chen IW; Wang XH
    Nature; 2000 Mar; 404(6774):168-71. PubMed ID: 10724165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si.
    Voyles PM; Muller DA; Grazul JL; Citrin PH; Gossmann HJ
    Nature; 2002 Apr; 416(6883):826-9. PubMed ID: 11976677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Depth-dependent imaging of individual dopant atoms in silicon.
    Voyles PM; Muller DA; Kirkland EJ
    Microsc Microanal; 2004 Apr; 10(2):291-300. PubMed ID: 15306055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sintering and microstructure of silicon carbide ceramic with Y3Al5O12 added by sol-gel method.
    Guo XZ; Yang H
    J Zhejiang Univ Sci B; 2005 Mar; 6(3):213-8. PubMed ID: 15682507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TiC nanocrystal formation from carburization of laser-grown Ti/O/C nanopowders for nanostructured ceramics.
    Leconte Y; Maskrot H; Herlin-Boime N; Porterat D; Reynaud C; Gierlotka S; Swiderska-Sroda A; Vicens J
    J Phys Chem B; 2006 Jan; 110(1):158-63. PubMed ID: 16471514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of atomic diffusion at twin-modified grain boundaries in copper.
    Chen KC; Wu WW; Liao CN; Chen LJ; Tu KN
    Science; 2008 Aug; 321(5892):1066-9. PubMed ID: 18719278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct observation and analysis of annealing-induced microstructure at interface and its effect on performance improvement of organic thin film transistors.
    Bao Q; Li J; Li CM; Dong ZL; Lu Z; Qin F; Gong C; Guo J
    J Phys Chem B; 2008 Oct; 112(39):12270-8. PubMed ID: 18771309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of silicon content on the sintering and biological behaviour of Ca10(PO4)(6-x)(SiO4)x(OH)(2-x) ceramics.
    Palard M; Combes J; Champion E; Foucaud S; Rattner A; Bernache-Assollant D
    Acta Biomater; 2009 May; 5(4):1223-32. PubMed ID: 19036652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of sintering additives and sintering methods on the mechanical, antimicrobial and optical properties of Si
    Du S; Li F; Zhang J; Chen Z; Zhang S; Zhao S; Zhao D; Fan B; Chen K; Liu G
    J Mech Behav Biomed Mater; 2024 Jun; 154():106529. PubMed ID: 38552335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructure of Spark Plasma-Sintered Silicon Nitride Ceramics.
    Lukianova OA; Novikov VY; Parkhomenko AA; Sirota VV; Krasilnikov VV
    Nanoscale Res Lett; 2017 Dec; 12(1):293. PubMed ID: 28445995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TEM foil preparation of sub-micrometre sized individual grains by focused ion beam technique.
    Holzapfel C; Soldera F; Vollmer C; Hoppe P; Mücklich F
    J Microsc; 2009 Jul; 235(1):59-66. PubMed ID: 19566627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.