These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15085433)

  • 1. Solute sorting in grass leaves: the transpiration stream.
    Fricke W
    Planta; 2004 Jul; 219(3):507-14. PubMed ID: 15085433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and tissue-specific accumulation of solutes in the growth zone of barley leaves in response to salinity.
    Fricke W
    Planta; 2004 Jul; 219(3):515-25. PubMed ID: 15085434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limitation of Cell Elongation in Barley (Hordeum vulgare L.) Leaves Through Mechanical and Tissue-Hydraulic Properties.
    Touati M; Knipfer T; Visnovitz T; Kameli A; Fricke W
    Plant Cell Physiol; 2015 Jul; 56(7):1364-73. PubMed ID: 25907571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tansley Review No. 22 What becomes of the transpiration stream?
    Canny MJ
    New Phytol; 1990 Mar; 114(3):341-368. PubMed ID: 33873972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The short-term growth response to salt of the developing barley leaf.
    Fricke W; Akhiyarova G; Wei W; Alexandersson E; Miller A; Kjellbom PO; Richardson A; Wojciechowski T; Schreiber L; Veselov D; Kudoyarova G; Volkov V
    J Exp Bot; 2006; 57(5):1079-95. PubMed ID: 16513814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cuticular wax deposition in growing barley (Hordeum vulgare) leaves commences in relation to the point of emergence of epidermal cells from the sheaths of older leaves.
    Richardson A; Franke R; Kerstiens G; Jarvis M; Schreiber L; Fricke W
    Planta; 2005 Oct; 222(3):472-83. PubMed ID: 15940461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential ion accumulation and ion fluxes in the mesophyll and epidermis of barley.
    Karley AJ; Leigh RA; Sanders D
    Plant Physiol; 2000 Mar; 122(3):835-44. PubMed ID: 10712547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HvPIP1;6, a barley (Hordeum vulgare L.) plasma membrane water channel particularly expressed in growing compared with non-growing leaf tissues.
    Wei W; Alexandersson E; Golldack D; Miller AJ; Kjellbom PO; Fricke W
    Plant Cell Physiol; 2007 Aug; 48(8):1132-47. PubMed ID: 17602190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves.
    Fricke W; Akhiyarova G; Veselov D; Kudoyarova G
    J Exp Bot; 2004 May; 55(399):1115-23. PubMed ID: 15047763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl- in salt-affected barley and durum wheat.
    James RA; Munns R; von Caemmerer S; Trejo C; Miller C; Condon TA
    Plant Cell Environ; 2006 Dec; 29(12):2185-97. PubMed ID: 17081251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophysical limitation of leaf cell elongation in source-reduced barley.
    Fricke W
    Planta; 2002 Jun; 215(2):327-38. PubMed ID: 12029483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion gradients in xylem exudate and guttation fluid related to tissue ion levels along primary leaves of barley.
    Nagai M; Ohnishi M; Uehara T; Yamagami M; Miura E; Kamakura M; Kitamura A; Sakaguchi S; Sakamoto W; Shimmen T; Fukaki H; Reid RJ; Furukawa A; Mimura T
    Plant Cell Environ; 2013 Oct; 36(10):1826-37. PubMed ID: 23464633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of divalent cations on ion fluxes and leaf photochemistry in salinized barley leaves.
    Shabala S; Shabala L; Van Volkenburgh E; Newman I
    J Exp Bot; 2005 May; 56(415):1369-78. PubMed ID: 15809285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological characterization of pathways for K(+) uptake into growing and non-growing leaf cells of barley.
    Volkov V; Boscari A; Clément M; Miller AJ; Amtmann A; Fricke W
    Plant Cell Environ; 2009 Dec; 32(12):1778-90. PubMed ID: 19682290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The biophysics of leaf growth in salt-stressed barley. A study at the cell level.
    Fricke W; Peters WS
    Plant Physiol; 2002 May; 129(1):374-88. PubMed ID: 12011367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water permeability differs between growing and non-growing barley leaf tissues.
    Volkov V; Hachez C; Moshelion M; Draye X; Chaumont F; Fricke W
    J Exp Bot; 2007; 58(3):377-90. PubMed ID: 17122408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water flows in the parasitic association Rhinanthus minor/Hordeum vulgare.
    Jiang F; Jeschke WD; Hartung W
    J Exp Bot; 2003 Aug; 54(389):1985-93. PubMed ID: 12869524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability in mesophyll conductance between barley genotypes, and effects on transpiration efficiency and carbon isotope discrimination.
    Barbour MM; Warren CR; Farquhar GD; Forrester G; Brown H
    Plant Cell Environ; 2010 Jul; 33(7):1176-85. PubMed ID: 20199618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in osmotic and turgor pressure in response to sugar accumulation in barley source leaves.
    Koroleva OA; Tomos AD; Farrar J; Pollock CJ
    Planta; 2002 Jun; 215(2):210-9. PubMed ID: 12029470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cells of the Upper and Lower Epidermis of Barley (Hordeum vulgare L.) Leaves Exhibit Distinct Patterns of Vacuolar Solutes.
    Fricke W; Pritchard J; Leigh RA; Tomos AD
    Plant Physiol; 1994 Apr; 104(4):1201-1208. PubMed ID: 12232158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.