These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 15086802)
1. A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings. Perruc E; Charpenteau M; Ramirez BC; Jauneau A; Galaud JP; Ranjeva R; Ranty B Plant J; 2004 May; 38(3):410-20. PubMed ID: 15086802 [TBL] [Abstract][Full Text] [Related]
2. The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Sun J; Jiang H; Xu Y; Li H; Wu X; Xie Q; Li C Plant Cell Physiol; 2007 Aug; 48(8):1148-58. PubMed ID: 17609218 [TBL] [Abstract][Full Text] [Related]
3. Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid. Magnan F; Ranty B; Charpenteau M; Sotta B; Galaud JP; Aldon D Plant J; 2008 Nov; 56(4):575-89. PubMed ID: 18643966 [TBL] [Abstract][Full Text] [Related]
4. Expression of pigeonpea hybrid-proline-rich protein encoding gene (CcHyPRP) in yeast and Arabidopsis affords multiple abiotic stress tolerance. Priyanka B; Sekhar K; Reddy VD; Rao KV Plant Biotechnol J; 2010 Jan; 8(1):76-87. PubMed ID: 20055960 [TBL] [Abstract][Full Text] [Related]
5. A zinc finger-containing glycine-rich RNA-binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions. Kim YO; Pan S; Jung CH; Kang H Plant Cell Physiol; 2007 Aug; 48(8):1170-81. PubMed ID: 17602187 [TBL] [Abstract][Full Text] [Related]
6. A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif. Reddy AS; Reddy VS; Golovkin M Biochem Biophys Res Commun; 2000 Dec; 279(3):762-9. PubMed ID: 11162426 [TBL] [Abstract][Full Text] [Related]
7. The Arabidopsis TSPO-related protein is a stress and abscisic acid-regulated, endoplasmic reticulum-Golgi-localized membrane protein. Guillaumot D; Guillon S; Déplanque T; Vanhee C; Gumy C; Masquelier D; Morsomme P; Batoko H Plant J; 2009 Oct; 60(2):242-56. PubMed ID: 19548979 [TBL] [Abstract][Full Text] [Related]
8. Functional characterization of a glycine-rich RNA-binding protein 2 in Arabidopsis thaliana under abiotic stress conditions. Kim JY; Park SJ; Jang B; Jung CH; Ahn SJ; Goh CH; Cho K; Han O; Kang H Plant J; 2007 May; 50(3):439-51. PubMed ID: 17376161 [TBL] [Abstract][Full Text] [Related]
9. Characterization of transgenic Arabidopsis plants overexpressing GR-RBP4 under high salinity, dehydration, or cold stress. Kwak KJ; Kim YO; Kang H J Exp Bot; 2005 Nov; 56(421):3007-16. PubMed ID: 16207746 [TBL] [Abstract][Full Text] [Related]
10. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. Nagaoka S; Takano T J Exp Bot; 2003 Oct; 54(391):2231-7. PubMed ID: 12909688 [TBL] [Abstract][Full Text] [Related]
11. Differential transcript regulation in Arabidopsis thaliana and the halotolerant Lobularia maritima indicates genes with potential function in plant salt adaptation. Popova OV; Yang O; Dietz KJ; Golldack D Gene; 2008 Nov; 423(2):142-8. PubMed ID: 18703123 [TBL] [Abstract][Full Text] [Related]
13. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Zhou QY; Tian AG; Zou HF; Xie ZM; Lei G; Huang J; Wang CM; Wang HW; Zhang JS; Chen SY Plant Biotechnol J; 2008 Jun; 6(5):486-503. PubMed ID: 18384508 [TBL] [Abstract][Full Text] [Related]
14. Cloning and expression of the AtGRP9 gene related to salt stress tolerance in Arabidopsis thaliana. Tang YX; Xia GX; Liu SG Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2002 Nov; 34(6):737-42. PubMed ID: 12417916 [TBL] [Abstract][Full Text] [Related]
15. Knockout of AtDjB1, a J-domain protein from Arabidopsis thaliana, alters plant responses to osmotic stress and abscisic acid. Wang X; Jia N; Zhao C; Fang Y; Lv T; Zhou W; Sun Y; Li B Physiol Plant; 2014 Oct; 152(2):286-300. PubMed ID: 24521401 [TBL] [Abstract][Full Text] [Related]
16. Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants. Naranjo MA; Forment J; Roldán M; Serrano R; Vicente O Plant Cell Environ; 2006 Oct; 29(10):1890-900. PubMed ID: 16930315 [TBL] [Abstract][Full Text] [Related]
17. A nuclear-encoded mitochondrial gene AtCIB22 is essential for plant development in Arabidopsis. Han L; Qin G; Kang D; Chen Z; Gu H; Qu LJ J Genet Genomics; 2010 Oct; 37(10):667-83. PubMed ID: 21035093 [TBL] [Abstract][Full Text] [Related]
18. Disruption of the cellulose synthase gene, AtCesA8/IRX1, enhances drought and osmotic stress tolerance in Arabidopsis. Chen Z; Hong X; Zhang H; Wang Y; Li X; Zhu JK; Gong Z Plant J; 2005 Jul; 43(2):273-83. PubMed ID: 15998313 [TBL] [Abstract][Full Text] [Related]
19. Isolation and functional characterization of the Arabidopsis salt-tolerance 32 (AtSAT32) gene associated with salt tolerance and ABA signaling. Park MY; Chung MS; Koh HS; Lee DJ; Ahn SJ; Kim CS Physiol Plant; 2009 Apr; 135(4):426-35. PubMed ID: 19210750 [TBL] [Abstract][Full Text] [Related]
20. The expression level of the chromatin-associated HMGB1 protein influences growth, stress tolerance, and transcriptome in Arabidopsis. Lildballe DL; Pedersen DS; Kalamajka R; Emmersen J; Houben A; Grasser KD J Mol Biol; 2008 Dec; 384(1):9-21. PubMed ID: 18822296 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]