These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 15087217)

  • 21. Encapsulation of fluorescent molecules by functionalized polymeric nanocontainers: investigation by confocal fluorescence imaging and fluorescence correlation spectroscopy.
    Rigler P; Meier W
    J Am Chem Soc; 2006 Jan; 128(1):367-73. PubMed ID: 16390167
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scanning fluorescence correlation spectroscopy: a tool for probing microsecond dynamics of surface-bound fluorescent species.
    Xiao Y; Buschmann V; Weston KD
    Anal Chem; 2005 Jan; 77(1):36-46. PubMed ID: 15623276
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct observation of transitions between surface-dominated and bulk diffusion regimes in nanochannels.
    Durand NF; Dellagiacoma C; Goetschmann R; Bertsch A; Märki I; Lasser T; Renaud P
    Anal Chem; 2009 Jul; 81(13):5407-12. PubMed ID: 19476366
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The oxidation state of a protein observed molecule-by-molecule.
    Schmauder R; Librizzi F; Canters GW; Schmidt T; Aartsma TJ
    Chemphyschem; 2005 Jul; 6(7):1381-6. PubMed ID: 15991272
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detection of H2O2 by fluorescence correlation spectroscopy.
    Ito E; Watabe S; Morikawa M; Kodama H; Okada R; Miura T
    Methods Enzymol; 2013; 526():135-43. PubMed ID: 23791098
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detection of single molecules: solution-phase single-molecule fluorescence correlation spectroscopy as an ultrasensitive, rapid and reliable system for immunological investigation.
    Földes-Papp Z; Demel U; Tilz GP
    J Immunol Methods; 2002 Feb; 260(1-2):117-24. PubMed ID: 11792382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Measuring, in solution, multiple-fluorophore labeling by combining fluorescence correlation spectroscopy and photobleaching.
    Delon A; Wang I; Lambert E; Mache S; Mache R; Derouard J; Motto-Ros V; Galland R
    J Phys Chem B; 2010 Mar; 114(8):2988-96. PubMed ID: 20143802
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The photon counting histogram in fluorescence fluctuation spectroscopy.
    Chen Y; Müller JD; So PT; Gratton E
    Biophys J; 1999 Jul; 77(1):553-67. PubMed ID: 10388780
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Triplet-state investigations of fluorescent dyes at dielectric interfaces using total internal reflection fluorescence correlation spectroscopy.
    Blom H; Chmyrov A; Hassler K; Davis LM; Widengren J
    J Phys Chem A; 2009 May; 113(19):5554-66. PubMed ID: 19374408
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photobleaching in two-photon scanning fluorescence correlation spectroscopy.
    Petrásek Z; Schwille P
    Chemphyschem; 2008 Jan; 9(1):147-58. PubMed ID: 18072191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A closed form for fluorescence correlation spectroscopy experiments in submicrometer structures.
    Sanguigno L; De Santo I; Causa F; Netti P
    Anal Chem; 2010 Dec; 82(23):9663-70. PubMed ID: 21038906
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Size dependence of protein diffusion very close to membrane surfaces: measurement by total internal reflection with fluorescence correlation spectroscopy.
    Pero JK; Haas EM; Thompson NL
    J Phys Chem B; 2006 Jun; 110(22):10910-8. PubMed ID: 16771344
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional optical detection based on pH dependent fluorescence lifetime.
    Gannot I; Ron I; Hekmat F; Chernomordik V; Gandjbakhche A
    Lasers Surg Med; 2004; 35(5):342-8. PubMed ID: 15611954
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-molecule studies of diffusion by oligomer-bound dyes in organically modified sol-gel-derived silicate films.
    Martin-Brown SA; Fu Y; Saroja G; Collinson MM; Higgins DA
    Anal Chem; 2005 Jan; 77(2):486-94. PubMed ID: 15649044
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-nucleotide polymorphism detection using nanomolar nucleotides and single-molecule fluorescence.
    Twist CR; Winson MK; Rowland JJ; Kell DB
    Anal Biochem; 2004 Apr; 327(1):35-44. PubMed ID: 15033508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction kinetics of tetramethylrhodamine transferrin with human transferrin receptor studied by fluorescence correlation spectroscopy.
    Schüler J; Frank J; Trier U; Schäfer-Korting M; Saenger W
    Biochemistry; 1999 Jun; 38(26):8402-8. PubMed ID: 10387086
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Correlation-matrix analysis of two-color coincidence events in single-molecule fluorescence experiments.
    Yahiatène I; Doose S; Huser T; Sauer M
    Anal Chem; 2012 Mar; 84(6):2729-36. PubMed ID: 22380604
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural effects of biologically relevant rhodamines on spectroscopy of fluorescence fluctuations.
    Ferreira JA
    Ann N Y Acad Sci; 2008; 1130():85-90. PubMed ID: 18596336
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new ultrasensitive way to circumvent PCR-based allele distinction: direct probing of unamplified genomic DNA by solution-phase hybridization using two-color fluorescence cross-correlation spectroscopy.
    Földes-Papp Z; Kinjo M; Tamura M; Birch-Hirschfeld E; Demel U; Tilz GP
    Exp Mol Pathol; 2005 Jun; 78(3):177-89. PubMed ID: 15924869
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical fluorescence correlation spectroscopy for the analysis of molecular dynamics under nonstandard conditions.
    Culbertson MJ; Williams JT; Cheng WW; Stults DA; Wiebracht ER; Kasianowicz JJ; Burden DL
    Anal Chem; 2007 Jun; 79(11):4031-9. PubMed ID: 17447726
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.