These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 15087445)

  • 41. Expression and phosphorylation of a three-repeat isoform of tau in transfected non-neuronal cells.
    Gallo JM; Hanger DP; Twist EC; Kosik KS; Anderton BH
    Biochem J; 1992 Sep; 286 ( Pt 2)(Pt 2):399-404. PubMed ID: 1530572
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cleavage of Tau by calpain in Alzheimer's disease: the quest for the toxic 17 kD fragment.
    Garg S; Timm T; Mandelkow EM; Mandelkow E; Wang Y
    Neurobiol Aging; 2011 Jan; 32(1):1-14. PubMed ID: 20961659
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Primary structure of high molecular weight tau present in the peripheral nervous system.
    Couchie D; Mavilia C; Georgieff IS; Liem RK; Shelanski ML; Nunez J
    Proc Natl Acad Sci U S A; 1992 May; 89(10):4378-81. PubMed ID: 1374898
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rem is a new member of the Rad- and Gem/Kir Ras-related GTP-binding protein family repressed by lipopolysaccharide stimulation.
    Finlin BS; Andres DA
    J Biol Chem; 1997 Aug; 272(35):21982-8. PubMed ID: 9268335
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of tau phosphorylation by glycogen synthase kinase-3beta in the regulation of organelle transport.
    Tatebayashi Y; Haque N; Tung YC; Iqbal K; Grundke-Iqbal I
    J Cell Sci; 2004 Apr; 117(Pt 9):1653-63. PubMed ID: 15075227
    [TBL] [Abstract][Full Text] [Related]  

  • 46. 14-3-3 proteins and protein phosphatases are not reduced in tau-deficient mice.
    Fujio K; Sato M; Uemura T; Sato T; Sato-Harada R; Harada A
    Neuroreport; 2007 Jul; 18(10):1049-52. PubMed ID: 17558294
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tau and microtubule-associated protein 2c transfection and neurite outgrowth in ND 7/23 cells.
    Langkopf A; Guilleminot J; Nunez J
    J Neurochem; 1995 Mar; 64(3):1045-53. PubMed ID: 7861133
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Expression of microtubule-associated proteins MAP2 and tau in cultured rat brain oligodendrocytes.
    Müller R; Heinrich M; Heck S; Blohm D; Richter-Landsberg C
    Cell Tissue Res; 1997 May; 288(2):239-49. PubMed ID: 9082959
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Residual structure in the repeat domain of tau: echoes of microtubule binding and paired helical filament formation.
    Eliezer D; Barré P; Kobaslija M; Chan D; Li X; Heend L
    Biochemistry; 2005 Jan; 44(3):1026-36. PubMed ID: 15654759
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Developmental regulation of alternatively spliced isoforms of mRNA encoding MAP2 and tau in rat brain oligodendrocytes during culture maturation.
    Richter-Landsberg C; Gorath M
    J Neurosci Res; 1999 May; 56(3):259-70. PubMed ID: 10336255
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Ras-like GTPase Gem is involved in cell shape remodelling and interacts with the novel kinesin-like protein KIF9.
    Piddini E; Schmid JA; de Martin R; Dotti CG
    EMBO J; 2001 Aug; 20(15):4076-87. PubMed ID: 11483511
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A novel strategy for specifically down-regulating individual Rho GTPase activity in tumor cells.
    Wang L; Yang L; Luo Y; Zheng Y
    J Biol Chem; 2003 Nov; 278(45):44617-25. PubMed ID: 12939257
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assembly of paired helical filaments from mouse tau: implications for the neurofibrillary pathology in transgenic mouse models for Alzheimer's disease.
    Kampers T; Pangalos M; Geerts H; Wiech H; Mandelkow E
    FEBS Lett; 1999 May; 451(1):39-44. PubMed ID: 10356980
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Visualizing the microtubule-associated protein tau in the nucleus.
    Lu J; Li T; He R; Bartlett PF; Götz J
    Sci China Life Sci; 2014 Apr; 57(4):422-31. PubMed ID: 24643416
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Novel isoforms of tau that lack the microtubule-binding domain.
    Luo MH; Tse SW; Memmott J; Andreadis A
    J Neurochem; 2004 Jul; 90(2):340-51. PubMed ID: 15228591
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Isoform-specific roles of the GTPase activating protein Nadrin in cytoskeletal reorganization of platelets.
    Beck S; Fotinos A; Lang F; Gawaz M; Elvers M
    Cell Signal; 2013 Jan; 25(1):236-46. PubMed ID: 22975681
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tau in Alzheimer's disease.
    Mandelkow EM; Mandelkow E
    Trends Cell Biol; 1998 Nov; 8(11):425-7. PubMed ID: 9854307
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Soluble Conformers of Aβ and Tau Alter Selective Proteins Governing Axonal Transport.
    Sherman MA; LaCroix M; Amar F; Larson ME; Forster C; Aguzzi A; Bennett DA; Ramsden M; Lesné SE
    J Neurosci; 2016 Sep; 36(37):9647-58. PubMed ID: 27629715
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 14-3-3ζ Mediates Tau Aggregation in Human Neuroblastoma M17 Cells.
    Li T; Paudel HK
    PLoS One; 2016; 11(8):e0160635. PubMed ID: 27548710
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Stable expression in Chinese hamster ovary cells of mutated tau genes causing frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17).
    Matsumura N; Yamazaki T; Ihara Y
    Am J Pathol; 1999 Jun; 154(6):1649-56. PubMed ID: 10362789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.