BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 15088645)

  • 41. Wolbachia infections and the expression of cytoplasmic incompatibility in Drosophila sechellia and D. mauritiana.
    Giordano R; O'Neill SL; Robertson HM
    Genetics; 1995 Aug; 140(4):1307-17. PubMed ID: 7498772
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of nucleotide substitutions of mitochondrial DNAs in Drosophila melanogaster and its sibling species.
    Satta Y; Ishiwa H; Chigusa SI
    Mol Biol Evol; 1987 Nov; 4(6):638-50. PubMed ID: 2832697
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of non-cytoplasmic incompatibility inducing Wolbachia in two continental African populations of Drosophila simulans.
    Charlat S; Le Chat L; Merçot H
    Heredity (Edinb); 2003 Jan; 90(1):49-55. PubMed ID: 12522425
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Population genomics of the Wolbachia endosymbiont in Drosophila melanogaster.
    Richardson MF; Weinert LA; Welch JJ; Linheiro RS; Magwire MM; Jiggins FM; Bergman CM
    PLoS Genet; 2012; 8(12):e1003129. PubMed ID: 23284297
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Patterns of microsatellite variability in the Drosophila melanogaster complex.
    Harr B; Schlötterer C
    Genetica; 2004 Mar; 120(1-3):71-7. PubMed ID: 15088648
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inter-island divergence within Drosophila mauritiana, a species of the D. simulans complex: Past history and/or speciation in progress?
    Legrand D; Chenel T; Campagne C; Lachaise D; Cariou ML
    Mol Ecol; 2011 Jul; 20(13):2787-804. PubMed ID: 21599771
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Population genomics of Wolbachia and mtDNA in Drosophila simulans from California.
    Signor S
    Sci Rep; 2017 Oct; 7(1):13369. PubMed ID: 29042606
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A cytoplasmic suppressor of a nuclear mutation affecting mitochondrial functions in Drosophila.
    Chen S; Oliveira MT; Sanz A; Kemppainen E; Fukuoh A; Schlicht B; Kaguni LS; Jacobs HT
    Genetics; 2012 Oct; 192(2):483-93. PubMed ID: 22851652
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genome sequencing reveals complex speciation in the Drosophila simulans clade.
    Garrigan D; Kingan SB; Geneva AJ; Andolfatto P; Clark AG; Thornton KR; Presgraves DC
    Genome Res; 2012 Aug; 22(8):1499-511. PubMed ID: 22534282
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Wolbachia-associated fitness benefit depends on genetic background in Drosophila simulans.
    Dean MD
    Proc Biol Sci; 2006 Jun; 273(1592):1415-20. PubMed ID: 16777731
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Further study on selective transmission of mitochondrial DNA in heteroplasmic lines of Drosophila melanogaster.
    Tsujimoto Y; Niki Y; Matsuura ET
    Jpn J Genet; 1991 Oct; 66(5):609-16. PubMed ID: 1777252
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differential fitness of mitochondrial DNA in perturbation cage studies correlates with global abundance and population history in Drosophila simulans.
    Ballard JW; James AC
    Proc Biol Sci; 2004 Jun; 271(1544):1197-201. PubMed ID: 15306370
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans.
    Rand DM; Kann LM
    Mol Biol Evol; 1996 Jul; 13(6):735-48. PubMed ID: 8754210
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Drosophila melanogaster, Drosophila simulans: so similar yet so different.
    Capy P; Gibert P
    Genetica; 2004 Mar; 120(1-3):5-16. PubMed ID: 15088643
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mitochondrial-nuclear epistasis affects fitness within species but does not contribute to fixed incompatibilities between species of Drosophila.
    Montooth KL; Meiklejohn CD; Abt DN; Rand DM
    Evolution; 2010 Dec; 64(12):3364-79. PubMed ID: 20624176
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A comprehensive study of genic variation in natural populations of Drosophila melanogaster. IV. Mitochondrial DNA variation and the role of history vs. selection in the genetic structure of geographic populations.
    Hale LR; Singh RS
    Genetics; 1991 Sep; 129(1):103-17. PubMed ID: 1682210
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Chromosome localization of the lambda20p1.4 clone of the Drosophila melanogaster nuclear lamina DNA in the melanogaster species subgroup of the genus Drosophila (Sophophora)].
    Grushko OG; Sharakhov IV; Stegniĭ VN
    Genetika; 2002 Apr; 38(4):483-8. PubMed ID: 12018165
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nucleotide variation in the tinman and bagpipe homeobox genes of Drosophila melanogaster.
    Balakirev ES; Ayala FJ
    Genetics; 2004 Apr; 166(4):1845-56. PubMed ID: 15126403
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of mitochondrial DNA in two species of the bipectinata species complex of Drosophila.
    Gupta JP; Aotsuka T; Inaba A; Kitagawa O
    Jpn J Genet; 1993 Aug; 68(4):257-64. PubMed ID: 8292389
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rapid sequence turnover at an intergenic locus in Drosophila.
    Singh ND; Petrov DA
    Mol Biol Evol; 2004 Apr; 21(4):670-80. PubMed ID: 14739245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.