These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
81 related articles for article (PubMed ID: 15089089)
1. A theoretical study on Cu(II) binding modes and antioxidant activity of mammalian normal prion protein. Ji HF; Zhang HY Chem Res Toxicol; 2004 Apr; 17(4):471-5. PubMed ID: 15089089 [TBL] [Abstract][Full Text] [Related]
2. Copper deficiency in the young bovine results in dramatic decreases in brain copper concentration but does not alter brain prion protein biology. Legleiter LR; Spears JW; Liu HC J Anim Sci; 2008 Nov; 86(11):3069-78. PubMed ID: 18599661 [TBL] [Abstract][Full Text] [Related]
3. Exposure to low dietary copper or low copper coupled with high dietary manganese for one year does not alter brain prion protein characteristics in the mature cow. Legleiter LR; Liu HC; Lloyd KE; Hansen SL; Fry RS; Spears JW J Anim Sci; 2007 Nov; 85(11):2895-903. PubMed ID: 17644786 [TBL] [Abstract][Full Text] [Related]
4. The amyloidogenic region of the human prion protein contains a high affinity (Met)(2)(His)(2) Cu(I) binding site. Badrick AC; Jones CE J Inorg Biochem; 2009 Aug; 103(8):1169-75. PubMed ID: 19615751 [TBL] [Abstract][Full Text] [Related]
5. De novo design of a copper(II)-binding helix-turn-helix chimera: the prion octarepeat motif in a new context. Shields SB; Franklin SJ Biochemistry; 2004 Dec; 43(51):16086-91. PubMed ID: 15610003 [TBL] [Abstract][Full Text] [Related]
6. Unusual noncovalent interaction between the chelated Cu(II) ion and the pi bond in the vitamin B(13) complex, cis-diammine(orotato)copper(II): theoretical and vibrational spectroscopy studies. Helios K; Wysokiński R; Zierkiewicz W; Proniewicz LM; Michalska D J Phys Chem B; 2009 Jun; 113(23):8158-69. PubMed ID: 19453135 [TBL] [Abstract][Full Text] [Related]
7. Cysteine-to-serine mutants of the human copper chaperone for superoxide dismutase reveal a copper cluster at a domain III dimer interface. Stasser JP; Eisses JF; Barry AN; Kaplan JH; Blackburn NJ Biochemistry; 2005 Mar; 44(9):3143-52. PubMed ID: 15736924 [TBL] [Abstract][Full Text] [Related]
8. Metal complexes with superoxide dismutase-like activity as candidates for anti-prion drug. Fukuuchi T; Doh-Ura K; Yoshihara S; Ohta S Bioorg Med Chem Lett; 2006 Dec; 16(23):5982-7. PubMed ID: 16987659 [TBL] [Abstract][Full Text] [Related]
9. The octarepeat region of prion protein, but not the TM1 domain, is important for the antioxidant effect of prion protein. Malaisé M; Schätzl HM; Bürkle A Free Radic Biol Med; 2008 Dec; 45(12):1622-30. PubMed ID: 18824094 [TBL] [Abstract][Full Text] [Related]
10. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase. Paksi Z; Jancsó A; Pacello F; Nagy N; Battistoni A; Gajda T J Inorg Biochem; 2008 Sep; 102(9):1700-10. PubMed ID: 18565588 [TBL] [Abstract][Full Text] [Related]
11. A new, model-free calculation method to determine the coordination modes and distribution of copper(II) among the metal binding sites of multihistidine peptides using circular dichroism spectroscopy. Osz K J Inorg Biochem; 2008 Dec; 102(12):2184-95. PubMed ID: 18973951 [TBL] [Abstract][Full Text] [Related]
12. Prion protein fate governed by metal binding. Tsenkova RN; Iordanova IK; Toyoda K; Brown DR Biochem Biophys Res Commun; 2004 Dec; 325(3):1005-12. PubMed ID: 15541389 [TBL] [Abstract][Full Text] [Related]
13. Binding of polyaminocarboxylate chelators to the active-site copper inhibits the GSNO-reductase activity but not the superoxide dismutase activity of Cu,Zn-superoxide dismutase. Ye M; English AM Biochemistry; 2006 Oct; 45(42):12723-32. PubMed ID: 17042490 [TBL] [Abstract][Full Text] [Related]
14. [Prion protein and copper: a mysterious relationship]. Rachidi W; Riondel J; McMahon HM; Favier A Pathol Biol (Paris); 2005 May; 53(4):244-50. PubMed ID: 15850959 [TBL] [Abstract][Full Text] [Related]
15. Metal ion chelating peptides with superoxide dismutase activity. Fisher AE; Naughton DP Biomed Pharmacother; 2005 May; 59(4):158-62. PubMed ID: 15862709 [TBL] [Abstract][Full Text] [Related]
16. Decreased brain copper due to copper deficiency has no effect on bovine prion proteins. Legleiter LR; Ahola JK; Engle TE; Spears JW Biochem Biophys Res Commun; 2007 Jan; 352(4):884-8. PubMed ID: 17157816 [TBL] [Abstract][Full Text] [Related]
17. Copper(II) inhibits in vitro conversion of prion protein into amyloid fibrils. Bocharova OV; Breydo L; Salnikov VV; Baskakov IV Biochemistry; 2005 May; 44(18):6776-87. PubMed ID: 15865423 [TBL] [Abstract][Full Text] [Related]
18. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Apak R; Güçlü K; Ozyürek M; Karademir SE J Agric Food Chem; 2004 Dec; 52(26):7970-81. PubMed ID: 15612784 [TBL] [Abstract][Full Text] [Related]
19. Copper reduction by the octapeptide repeat region of prion protein: pH dependence and implications in cellular copper uptake. Miura T; Sasaki S; Toyama A; Takeuchi H Biochemistry; 2005 Jun; 44(24):8712-20. PubMed ID: 15952778 [TBL] [Abstract][Full Text] [Related]
20. Can chicken and human PrPs possess SOD-like activity after beta-cleavage? Stańczak P; Kozlowski H Biochem Biophys Res Commun; 2007 Jan; 352(1):198-202. PubMed ID: 17112476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]