These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 15089157)
1. Breakdown of universality in quantum chaotic transport: the two-phase dynamical fluid model. Jacquod P; Sukhorukov EV Phys Rev Lett; 2004 Mar; 92(11):116801. PubMed ID: 15089157 [TBL] [Abstract][Full Text] [Related]
2. Microscopic theory for the quantum to classical crossover in chaotic transport. Whitney RS; Jacquod P Phys Rev Lett; 2005 Mar; 94(11):116801. PubMed ID: 15903878 [TBL] [Abstract][Full Text] [Related]
3. Conductance fluctuations in chaotic bilayer graphene quantum dots. Bao R; Huang L; Lai YC; Grebogi C Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012918. PubMed ID: 26274258 [TBL] [Abstract][Full Text] [Related]
4. Universality in chaotic quantum transport: the concordance between random-matrix and semiclassical theories. Berkolaiko G; Kuipers J Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):045201. PubMed ID: 22680530 [TBL] [Abstract][Full Text] [Related]
5. The semiclassical regime of the chaotic quantum-classical transition. Greenbaum BD; Habib S; Shizume K; Sundaram B Chaos; 2005 Sep; 15(3):33302. PubMed ID: 16252988 [TBL] [Abstract][Full Text] [Related]
6. Quantum chaotic scattering in graphene systems in the absence of invariant classical dynamics. Wang GL; Ying L; Lai YC; Grebogi C Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052908. PubMed ID: 23767599 [TBL] [Abstract][Full Text] [Related]
7. Quantum-chaotic scattering effects in semiconductor microstructures. Baranger HU; Jalabert RA; Stone AD Chaos; 1993 Oct; 3(4):665-682. PubMed ID: 12780071 [TBL] [Abstract][Full Text] [Related]
8. Transmission phase of a quantum dot and statistical fluctuations of partial-width amplitudes. Jalabert RA; Weick G; Weidenmüller HA; Weinmann D Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052911. PubMed ID: 25353865 [TBL] [Abstract][Full Text] [Related]
9. Long-range correlations in quantum-chaotic spectra. Pandey A; Puri S; Kumar S Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066210. PubMed ID: 16089852 [TBL] [Abstract][Full Text] [Related]
10. Conductance fluctuations and quantum chaotic scattering in semiconductor microstructures. Marcus CM; Westervelt RM; Hopkins PF; Gossard AC Chaos; 1993 Oct; 3(4):643-653. PubMed ID: 12780069 [TBL] [Abstract][Full Text] [Related]
11. Fractal conductance fluctuations of classical origin. Hennig H; Fleischmann R; Hufnagel L; Geisel T Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 2):015202. PubMed ID: 17677525 [TBL] [Abstract][Full Text] [Related]
12. Universality in quantum chaos and the one-parameter scaling theory. García-García AM; Wang J Phys Rev Lett; 2008 Feb; 100(7):070603. PubMed ID: 18352537 [TBL] [Abstract][Full Text] [Related]
13. Shot noise in ballistic quantum dots with a mixed classical phase space. Sim HS; Schomerus H Phys Rev Lett; 2002 Aug; 89(6):066801. PubMed ID: 12190598 [TBL] [Abstract][Full Text] [Related]
14. Decoherence, entanglement decay, and equilibration produced by chaotic environments. Lemos GB; Toscano F Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016220. PubMed ID: 21867286 [TBL] [Abstract][Full Text] [Related]
15. A semiclassical reversibility paradox in simple chaotic systems. Tomsovic S Philos Trans A Math Phys Eng Sci; 2016 Jun; 374(2069):. PubMed ID: 27140974 [TBL] [Abstract][Full Text] [Related]
16. Directed chaotic transport in Hamiltonian ratchets. Schanz H; Dittrich T; Ketzmerick R Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026228. PubMed ID: 15783408 [TBL] [Abstract][Full Text] [Related]
17. Geometric correlations and breakdown of mesoscopic universality in spin transport. Adagideli I; Jacquod P; Scheid M; Duckheim M; Loss D; Richter K Phys Rev Lett; 2010 Dec; 105(24):246807. PubMed ID: 21231550 [TBL] [Abstract][Full Text] [Related]