These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 15089164)
1. Selective cap opening in carbon nanotubes driven by laser-induced coherent phonons. Dumitrică T; Garcia ME; Jeschke HO; Yakobson BI Phys Rev Lett; 2004 Mar; 92(11):117401. PubMed ID: 15089164 [TBL] [Abstract][Full Text] [Related]
2. Interaction of coherent phonons with defects and elementary excitations. Hase M; Kitajima M J Phys Condens Matter; 2010 Feb; 22(7):073201. PubMed ID: 21386377 [TBL] [Abstract][Full Text] [Related]
3. Chirality-selective excitation of coherent phonons in carbon nanotubes by femtosecond optical pulses. Kim JH; Han KJ; Kim NJ; Yee KJ; Lim YS; Sanders GD; Stanton CJ; Booshehri LG; Hároz EH; Kono J Phys Rev Lett; 2009 Jan; 102(3):037402. PubMed ID: 19257393 [TBL] [Abstract][Full Text] [Related]
4. Theory of coherent phonons in carbon nanotubes and graphene nanoribbons. Sanders GD; Nugraha AR; Sato K; Kim JH; Kono J; Saito R; Stanton CJ J Phys Condens Matter; 2013 Apr; 25(14):144201. PubMed ID: 23478856 [TBL] [Abstract][Full Text] [Related]
5. Time- and momentum-resolved phonon-induced relaxation dynamics in carbon nanotubes. Köhler C; Watermann T; Malic E J Phys Condens Matter; 2013 Mar; 25(10):105301. PubMed ID: 23380669 [TBL] [Abstract][Full Text] [Related]
6. Photoinduced multimode coherent acoustic phonons of metallic nanoprisms and the effects of shape-induced anisotropic electronic stresses. Tai PT; Yu P; Tang J J Chem Phys; 2011 May; 134(18):184506. PubMed ID: 21568520 [TBL] [Abstract][Full Text] [Related]
7. Origin of axial and radial expansions in carbon nanotubes revealed by ultrafast diffraction and spectroscopy. Vanacore GM; van der Veen RM; Zewail AH ACS Nano; 2015 Feb; 9(2):1721-9. PubMed ID: 25636018 [TBL] [Abstract][Full Text] [Related]
8. Controlling phase change through ultrafast excitation of coherent phonons. Liebig CM; Wang Y; Xu X Opt Express; 2010 Sep; 18(19):20498-504. PubMed ID: 20940942 [TBL] [Abstract][Full Text] [Related]
9. Selective ultrafast probing of transient hot chemisorbed and precursor states of CO on Ru(0001). Beye M; Anniyev T; Coffee R; Dell'Angela M; Föhlisch A; Gladh J; Katayama T; Kaya S; Krupin O; Møgelhøj A; Nilsson A; Nordlund D; Nørskov JK; Öberg H; Ogasawara H; Pettersson LG; Schlotter WF; Sellberg JA; Sorgenfrei F; Turner JJ; Wolf M; Wurth W; Oström H Phys Rev Lett; 2013 May; 110(18):186101. PubMed ID: 23683223 [TBL] [Abstract][Full Text] [Related]
10. Direct measurement of the lifetime of optical phonons in single-walled carbon nanotubes. Song D; Wang F; Dukovic G; Zheng M; Semke ED; Brus LE; Heinz TF Phys Rev Lett; 2008 Jun; 100(22):225503. PubMed ID: 18643430 [TBL] [Abstract][Full Text] [Related]
11. Selective Excitation of Atomic-Scale Dynamics by Coherent Exciton Motion in the Non-Born-Oppenheimer Regime. Nie Z; Long R; Li J; Zheng YY; Prezhdo OV; Loh ZH J Phys Chem Lett; 2013 Dec; 4(24):4260-6. PubMed ID: 26296176 [TBL] [Abstract][Full Text] [Related]
12. Physical mechanisms of coherent acoustic phonons generation by ultrafast laser action. Ruello P; Gusev VE Ultrasonics; 2015 Feb; 56():21-35. PubMed ID: 25038958 [TBL] [Abstract][Full Text] [Related]
13. Nanoscale coherent phonon spectroscopy. Liu S; Hammud A; Hamada I; Wolf M; Müller M; Kumagai T Sci Adv; 2022 Oct; 8(42):eabq5682. PubMed ID: 36269832 [TBL] [Abstract][Full Text] [Related]
14. Coherent optical control of the ultrafast dephasing of phonon-plasmon coupling in a polar semiconductor using a pulse train of below-band-gap excitation. Lee JD; Hase M Phys Rev Lett; 2008 Dec; 101(23):235501. PubMed ID: 19113565 [TBL] [Abstract][Full Text] [Related]
15. Generation of coherent phonons in a CdTe single crystal using an ultrafast two-phonon laser-excitation process. Mizoguchi K; Morishita R; Oohata G Phys Rev Lett; 2013 Feb; 110(7):077402. PubMed ID: 25166406 [TBL] [Abstract][Full Text] [Related]
16. Femtosecond electron diffraction: direct probe of ultrafast structural dynamics in metal films. Nie S; Wang X; Li J; Clinite R; Cao J Microsc Res Tech; 2009 Mar; 72(3):131-43. PubMed ID: 19130610 [TBL] [Abstract][Full Text] [Related]
17. Single carbon nanotubes probed by photoluminescence excitation spectroscopy: the role of phonon-assisted transitions. Htoon H; O'Connell MJ; Doorn SK; Klimov VI Phys Rev Lett; 2005 Apr; 94(12):127403. PubMed ID: 15903961 [TBL] [Abstract][Full Text] [Related]
18. Optically driven quantum dots as source of coherent cavity phonons: a proposal for a phonon laser scheme. Kabuss J; Carmele A; Brandes T; Knorr A Phys Rev Lett; 2012 Aug; 109(5):054301. PubMed ID: 23006175 [TBL] [Abstract][Full Text] [Related]
19. Giant acceleration of polaron transport by ultrafast laser-induced coherent phonons. Wang HM; Liu XB; Hu SQ; Chen DQ; Chen Q; Zhang C; Guan MX; Meng S Sci Adv; 2023 Aug; 9(33):eadg3833. PubMed ID: 37585535 [TBL] [Abstract][Full Text] [Related]
20. Coherent phonon excitation and linear thermal expansion in structural dynamics and ultrafast electron diffraction of laser-heated metals. Tang J J Chem Phys; 2008 Apr; 128(16):164702. PubMed ID: 18447474 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]