These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 15089334)

  • 1. Lattice Boltzmann simulation on particle suspensions in a two-dimensional symmetric stenotic artery.
    Li H; Fang H; Lin Z; Xu S; Chen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031919. PubMed ID: 15089334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particulate nature of blood determines macroscopic rheology: a 2-D lattice Boltzmann analysis.
    Sun C; Munn LL
    Biophys J; 2005 Mar; 88(3):1635-45. PubMed ID: 15613630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical modeling of pulsatile turbulent flow in stenotic vessels.
    Varghese SS; Frankel SH
    J Biomech Eng; 2003 Aug; 125(4):445-60. PubMed ID: 12968569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of stenosis asymmetry on blood flow and artery compression: a three-dimensional fluid-structure interaction model.
    Tang D; Yang C; Kobayashi S; Zheng J; Vito RP
    Ann Biomed Eng; 2003 Nov; 31(10):1182-93. PubMed ID: 14649492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient lattice Boltzmann algorithm for Brownian suspensions.
    Mynam M; Sunthar P; Ansumali S
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2237-45. PubMed ID: 21536570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheology of concentrated suspensions of deformable elastic particles such as human erythrocytes.
    Pal R
    J Biomech; 2003 Jul; 36(7):981-9. PubMed ID: 12757807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of arterial stenosis and its applications to blood diseases.
    Pralhad RN; Schultz DH
    Math Biosci; 2004 Aug; 190(2):203-20. PubMed ID: 15234617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large deforming buoyant embolus passing through a stenotic common carotid artery: a computational simulation.
    Vahidi B; Fatouraee N
    J Biomech; 2012 Apr; 45(7):1312-22. PubMed ID: 22365500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle-fluid suspension model of blood flow through stenotic vessels with applications.
    Srivastava VP
    Int J Biomed Comput; 1995 Feb; 38(2):141-54. PubMed ID: 7729930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of particle concentration on the partitioning of suspensions at small divergent bifurcations.
    Ditchfield R; Olbricht WL
    J Biomech Eng; 1996 Aug; 118(3):287-94. PubMed ID: 8872249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lattice Boltzmann simulation of a single charged particle in a Newtonian fluid.
    Wan RZ; Fang HP; Lin Z; Chen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011401. PubMed ID: 12935137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations.
    Hyakutake T; Nagai S
    Microvasc Res; 2015 Jan; 97():115-23. PubMed ID: 25446286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotational behaviour of red blood cells in suspension: a mesoscale simulation study.
    Janoschek F; Mancini F; Harting J; Toschi F
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2337-44. PubMed ID: 21536581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational evaluation of smoothed particle hydrodynamics for implementing blood flow modelling through CT reconstructed arteries.
    Qin Y; Wu J; Hu Q; Ghista DN; Wong KK
    J Xray Sci Technol; 2017; 25(2):213-232. PubMed ID: 28234274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational study of particle size effects on selective binding of nanoparticles in arterial stenosis.
    Jeong W; Kim MJ; Rhee K
    Comput Biol Med; 2013 Jun; 43(5):417-24. PubMed ID: 23566388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mathematical model for blood flow through an arterial bifurcation.
    Tandon PN; Kawahara M; Rana UV
    Int J Biomed Comput; 1994 May; 35(4):309-25. PubMed ID: 8063457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic analysis of pressure drop and flow behavior in hypertensive micro vessels.
    Hu R; Li F; Lv J; He Y; Lu D; Yamada T; Ono N
    Biomed Microdevices; 2015; 17(3):9959. PubMed ID: 26004808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of the simplified Bernoulli relationship in measuring pressure gradients across stenosis.
    Rieu R; Pelissier R; Isaaz K
    Int Angiol; 1989; 8(4):210-5. PubMed ID: 2699483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-vitro study on haemodiluted blood flow in a sinusoidal microstenosis.
    Kang MJ; Ji HS; Lee SJ
    Proc Inst Mech Eng H; 2010; 224(1):17-25. PubMed ID: 20225454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A multi-component lattice Boltzmann scheme: towards the mesoscale simulation of blood flow.
    Dupin MM; Halliday I; Care CM
    Med Eng Phys; 2006 Jan; 28(1):13-8. PubMed ID: 16006168
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.