These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 15089334)

  • 21. A Lattice-Boltzmann model for suspensions of self-propelling colloidal particles.
    Ramachandran S; Sunil Kumar PB; Pagonabarraga I
    Eur Phys J E Soft Matter; 2006 Jun; 20(2):151-8. PubMed ID: 16779527
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Real-time assessment of flow reversal in an eccentric arterial stenotic model.
    Ai L; Zhang L; Dai W; Hu C; Shung KK; Hsiai TK
    J Biomech; 2010 Oct; 43(14):2678-83. PubMed ID: 20655537
    [TBL] [Abstract][Full Text] [Related]  

  • 23. LES of additive and non-additive pulsatile flows in a model arterial stenosis.
    Molla MM; Paul MC; Roditi G
    Comput Methods Biomech Biomed Engin; 2010 Feb; 13(1):105-20. PubMed ID: 19657797
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The area of the pressure-flow loop for assessment of arterial stenosis: a new index.
    Ovadia-Blechman Z; Einav S; Zaretsky U; Castel D; Toledo E; Eldar M
    Technol Health Care; 2002; 10(1):39-56. PubMed ID: 11847447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical simulation of flow oscillations in stenotic arterial segment.
    Tura A; Cavalcanti S
    Comput Biol Med; 2001 Mar; 31(2):113-31. PubMed ID: 11165219
    [TBL] [Abstract][Full Text] [Related]  

  • 26. No need for particle tracing: from accumulating fluid properties to novel blood coagulation model in the lattice Boltzmann method.
    Moiseyev G; Bar-Yoseph PZ
    J Biomech; 2010 Mar; 43(5):864-70. PubMed ID: 20044090
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A one-dimensional finite element method for simulation-based medical planning for cardiovascular disease.
    Wan J; Steele B; Spicer SA; Strohband S; Feijóo GR; Hughes TJ; Taylor CA
    Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):195-206. PubMed ID: 12186712
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coupled fluid-wall modelling of steady flow in stenotic carotid arteries.
    Yakhshi-Tafti E; Tafazzoli-Shadpour M; Alavi SH; Mojra A
    J Med Eng Technol; 2009; 33(7):544-50. PubMed ID: 19591048
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A mathematical description of blood spiral flow in vessels: application to a numerical study of flow in arterial bending.
    Grigioni M; Daniele C; Morbiducci U; Del Gaudio C; D'Avenio G; Balducci A; Barbaro V
    J Biomech; 2005 Jul; 38(7):1375-86. PubMed ID: 15922748
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Application of the lattice Boltzmann model to simulated stenosis growth in a two-dimensional carotid artery.
    Boyd J; Buick J; Cosgrove JA; Stansell P
    Phys Med Biol; 2005 Oct; 50(20):4783-96. PubMed ID: 16204872
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Time-resolved DPIV investigation of pulsatile flow in symmetric stenotic arteries--effects of phase angle.
    Karri S; Vlachos PP
    J Biomech Eng; 2010 Mar; 132(3):031010. PubMed ID: 20459198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulation of three-dimensional pulsatile flow through an asymmetric stenosis.
    Dvinsky AS; Ojha M
    Med Biol Eng Comput; 1994 Mar; 32(2):138-42. PubMed ID: 8022209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of large-eddy simulation to the study of pulsatile flow in a modeled arterial stenosis.
    Mittal R; Simmons SP; Udaykumar HS
    J Biomech Eng; 2001 Aug; 123(4):325-32. PubMed ID: 11563757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An automated three-dimensional particle tracking technique for the study of modeled arterial flow fields.
    Tsao R; Jones SA; Giddens DP; Zarins CK; Glagov S
    J Biomech Eng; 1995 May; 117(2):211-8. PubMed ID: 7666658
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Effects of wall shear stress on the morphology and permeability of endothelial cells in stenotic rabbit abdominal aorta].
    Wu Y; Deng X; Zhen X; Wang K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):225-9. PubMed ID: 15884523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Viscous flow simulation in a stenosis model using discrete particle dynamics: a comparison between DPD and CFD.
    Feng R; Xenos M; Girdhar G; Kang W; Davenport JW; Deng Y; Bluestein D
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):119-29. PubMed ID: 21369918
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vortex shedding in steady flow through a model of an arterial stenosis and its relevance to mural platelet deposition.
    Bluestein D; Gutierrez C; Londono M; Schoephoerster RT
    Ann Biomed Eng; 1999; 27(6):763-73. PubMed ID: 10625149
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of sedimentation of small red blood cell aggregates on blood flow in narrow horizontal tubes.
    Murata T
    Biorheology; 1996; 33(3):267-83. PubMed ID: 8935183
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Movement of a spherical cell in capillaries using a boundary element method.
    Wen PH; Aliabadi MH; Wang W
    J Biomech; 2007; 40(8):1786-93. PubMed ID: 17027993
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-phase CFD analytical modeling of blood flow.
    Jung J; Hassanein A
    Med Eng Phys; 2008 Jan; 30(1):91-103. PubMed ID: 17244522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.